BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15556982)

  • 1. The transmembrane domain of the acetylcholine receptor: insights from simulations on synthetic peptide models.
    Saiz L; Klein ML
    Biophys J; 2005 Feb; 88(2):959-70. PubMed ID: 15556982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology modeling and molecular dynamics simulations of transmembrane domain structure of human neuronal nicotinic acetylcholine receptor.
    Saladino AC; Xu Y; Tang P
    Biophys J; 2005 Feb; 88(2):1009-17. PubMed ID: 15574706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles.
    Law RJ; Forrest LR; Ranatunga KM; La Rocca P; Tieleman DP; Sansom MS
    Proteins; 2000 Apr; 39(1):47-55. PubMed ID: 10737926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.
    Kim S; Chamberlain AK; Bowie JU
    Biophys J; 2004 Aug; 87(2):792-9. PubMed ID: 15298888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and environment of channel-forming peptides: a simulation study.
    Johnston JM; Cook GA; Tomich JM; Sansom MS
    Biophys J; 2006 Mar; 90(6):1855-64. PubMed ID: 16387778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics of channel gating of the nicotinic acetylcholine receptor.
    Liu X; Xu Y; Li H; Wang X; Jiang H; Barrantes FJ
    PLoS Comput Biol; 2008 Jan; 4(1):e19. PubMed ID: 18225945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers.
    Tarek M; Maigret B; Chipot C
    Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pores formed by the nicotinic receptor m2delta Peptide: a molecular dynamics simulation study.
    Law RJ; Tieleman DP; Sansom MS
    Biophys J; 2003 Jan; 84(1):14-27. PubMed ID: 12524262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study.
    Xu Y; Barrantes FJ; Luo X; Chen K; Shen J; Jiang H
    J Am Chem Soc; 2005 Feb; 127(4):1291-9. PubMed ID: 15669869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling.
    Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA
    Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure.
    Oblatt-Montal M; Bühler LK; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14601-7. PubMed ID: 7686900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of the M2 channel-lining segment from the nicotinic acetylcholine receptor.
    Montal M; Opella SJ
    Biochim Biophys Acta; 2002 Oct; 1565(2):287-93. PubMed ID: 12409201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations predict a tilted orientation for the helical region of dynorphin A(1-17) in dimyristoylphosphatidylcholine bilayers.
    Sankararamakrishnan R; Weinstein H
    Biophys J; 2000 Nov; 79(5):2331-44. PubMed ID: 11053113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transmembrane domain of Neu in a lipid bilayer: molecular dynamics simulations.
    van der Ende BM; Sharom FJ; Davis JH
    Eur Biophys J; 2004 Nov; 33(7):596-610. PubMed ID: 15197512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.
    Deol SS; Bond PJ; Domene C; Sansom MS
    Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OmpT: molecular dynamics simulations of an outer membrane enzyme.
    Baaden M; Sansom MS
    Biophys J; 2004 Nov; 87(5):2942-53. PubMed ID: 15315948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy.
    Opella SJ; Marassi FM; Gesell JJ; Valente AP; Kim Y; Oblatt-Montal M; Montal M
    Nat Struct Biol; 1999 Apr; 6(4):374-9. PubMed ID: 10201407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation.
    Nagao T; Mishima D; Javkhlantugs N; Wang J; Ishioka D; Yokota K; Norisada K; Kawamura I; Ueda K; Naito A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2789-98. PubMed ID: 26248014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins.
    Im W; Feig M; Brooks CL
    Biophys J; 2003 Nov; 85(5):2900-18. PubMed ID: 14581194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.