BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 15557293)

  • 1. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution.
    Puchta H
    J Exp Bot; 2005 Jan; 56(409):1-14. PubMed ID: 15557293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA double-strand break repair by homologous recombination.
    van den Bosch M; Lohman PH; Pastink A
    Biol Chem; 2002 Jun; 383(6):873-92. PubMed ID: 12222678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis DNA double-strand break repair pathways.
    West CE; Waterworth WM; Sunderland PA; Bray CM
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):964-6. PubMed ID: 15506937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining].
    Rass E; Grabarz A; Bertrand P; Lopez BS
    Cancer Radiother; 2012 Feb; 16(1):1-10. PubMed ID: 21737335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells.
    Saleh-Gohari N; Helleday T
    Nucleic Acids Res; 2004; 32(12):3683-8. PubMed ID: 15252152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of DNA double-strand break repair pathways in mice.
    Brugmans L; Kanaar R; Essers J
    Mutat Res; 2007 Jan; 614(1-2):95-108. PubMed ID: 16797606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair.
    Sonoda E; Hochegger H; Saberi A; Taniguchi Y; Takeda S
    DNA Repair (Amst); 2006 Sep; 5(9-10):1021-9. PubMed ID: 16807135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining.
    Rebuzzini P; Khoriauli L; Azzalin CM; Magnani E; Mondello C; Giulotto E
    DNA Repair (Amst); 2005 May; 4(5):546-55. PubMed ID: 15811627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease.
    Nickoloff JA; Brenneman MA
    Methods Mol Biol; 2004; 262():35-52. PubMed ID: 14769955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid assessment of two major repair activities against DNA double-strand breaks in vertebrate cells.
    Sasaki S; Sato M; Katsura Y; Kurimasa A; Chen DJ; Takeda S; Kuwano H; Yokota J; Kohno T
    Biochem Biophys Res Commun; 2006 Jan; 339(2):583-90. PubMed ID: 16310168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic DNA is captured and amplified during double-strand break (DSB) repair in human cells.
    Little KC; Chartrand P
    Oncogene; 2004 May; 23(23):4166-72. PubMed ID: 15048077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair.
    Mascarenhas J; Sanchez H; Tadesse S; Kidane D; Krisnamurthy M; Alonso JC; Graumann PL
    BMC Mol Biol; 2006 Jun; 7():20. PubMed ID: 16780573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J
    DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitotic recombination in Saccharomyces cerevisiae.
    Prado F; Cortés-Ledesma F; Huertas P; Aguilera A
    Curr Genet; 2003 Jan; 42(4):185-98. PubMed ID: 12589470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DSB repair: the yeast paradigm.
    Aylon Y; Kupiec M
    DNA Repair (Amst); 2004; 3(8-9):797-815. PubMed ID: 15279765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells.
    Honma M; Izumi M; Sakuraba M; Tadokoro S; Sakamoto H; Wang W; Yatagai F; Hayashi M
    Environ Mol Mutagen; 2003; 42(4):288-98. PubMed ID: 14673874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.