BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15558051)

  • 1. Dynamic opening of DNA during the enzymatic search for a damaged base.
    Cao C; Jiang YL; Stivers JT; Song F
    Nat Struct Mol Biol; 2004 Dec; 11(12):1230-6. PubMed ID: 15558051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition?
    Krosky DJ; Schwarz FP; Stivers JT
    Biochemistry; 2004 Apr; 43(14):4188-95. PubMed ID: 15065862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of uracil DNA glycosylase-DNA complexes: insights into DNA damage recognition and catalysis.
    Dong J; Drohat AC; Stivers JT; Pankiewicz KW; Carey PR
    Biochemistry; 2000 Oct; 39(43):13241-50. PubMed ID: 11052677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of uracil and 5-fluorouracil in DNA.
    Parker JB; Stivers JT
    Biochemistry; 2011 Feb; 50(5):612-7. PubMed ID: 21190322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
    Parker JB; Bianchet MA; Krosky DJ; Friedman JI; Amzel LM; Stivers JT
    Nature; 2007 Sep; 449(7161):433-7. PubMed ID: 17704764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base-flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge.
    Jiang YL; Stivers JT; Song F
    Biochemistry; 2002 Sep; 41(37):11248-54. PubMed ID: 12220190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.
    Biswas T; Clos LJ; SantaLucia J; Mitra S; Roy R
    J Mol Biol; 2002 Jul; 320(3):503-13. PubMed ID: 12096906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of an unnatural difluorophenyl nucleotide by uracil DNA glycosylase.
    Jiang YL; McDowell LM; Poliks B; Studelska DR; Cao C; Potter GS; Schaefer J; Song F; Stivers JT
    Biochemistry; 2004 Dec; 43(49):15429-38. PubMed ID: 15581354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of damage recognition and catalysis of DNA repair.
    Osman R; Fuxreiter M; Luo N
    Comput Chem; 2000 May; 24(3-4):331-9. PubMed ID: 10816003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8.
    Hoseki J; Okamoto A; Masui R; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S
    J Mol Biol; 2003 Oct; 333(3):515-26. PubMed ID: 14556741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair.
    Peña-Diaz J; Akbari M; Sundheim O; Farez-Vidal ME; Andersen S; Sneve R; Gonzalez-Pacanowska D; Krokan HE; Slupphaug G
    J Mol Biol; 2004 Sep; 342(3):787-99. PubMed ID: 15342237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of DNA flexibility in sequence-dependent activity of uracil DNA glycosylase.
    Seibert E; Ross JB; Osman R
    Biochemistry; 2002 Sep; 41(36):10976-84. PubMed ID: 12206669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic assessment of the flexibility of uracil damaged DNA.
    Orndorff PB; van der Vaart A
    J Biomol Struct Dyn; 2024 May; 42(8):3958-3968. PubMed ID: 37261803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The catalytic power of uracil DNA glycosylase in the opening of thymine base pairs.
    Cao C; Jiang YL; Krosky DJ; Stivers JT
    J Am Chem Soc; 2006 Oct; 128(40):13034-5. PubMed ID: 17017766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.