These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 15558326)

  • 21. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition.
    Reich PB
    Science; 2009 Dec; 326(5958):1399-402. PubMed ID: 19965757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.
    Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR
    PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term elevated CO
    Yang S; Zheng Q; Yuan M; Shi Z; Chiariello NR; Docherty KM; Dong S; Field CB; Gu Y; Gutknecht J; Hungate BA; Le Roux X; Ma X; Niboyet A; Yuan T; Zhou J; Yang Y
    Sci Total Environ; 2019 Feb; 652():1474-1481. PubMed ID: 30586832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disentangling root responses to climate change in a semiarid grassland.
    Carrillo Y; Dijkstra FA; LeCain D; Morgan JA; Blumenthal D; Waldron S; Pendall E
    Oecologia; 2014 Jun; 175(2):699-711. PubMed ID: 24643718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity.
    Zavaleta ES; Shaw MR; Chiariello NR; Mooney HA; Field CB
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7650-4. PubMed ID: 12810960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog.
    Larmola T; Bubier JL; Kobyljanec C; Basiliko N; Juutinen S; Humphreys E; Preston M; Moore TR
    Glob Chang Biol; 2013 Dec; 19(12):3729-39. PubMed ID: 23868415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of increased precipitation and nitrogen deposition on the litter decomposition and soil microbial community structure in a semiarid grassland.
    Li Z; Peng Q; Dong Y; Guo Y
    Sci Total Environ; 2022 Oct; 844():157115. PubMed ID: 35787902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.
    Vivanco L; Austin AT
    Oecologia; 2006 Nov; 150(1):97-107. PubMed ID: 16917779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated CO
    Augustine DJ; Blumenthal DM; Springer TL; LeCain DR; Gunter SA; Derner JD
    Ecol Appl; 2018 Apr; 28(3):721-735. PubMed ID: 29297964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrients and defoliation increase soil carbon inputs in grassland.
    Ziter C; MacDougall AS
    Ecology; 2013 Jan; 94(1):106-16. PubMed ID: 23600245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Will rising atmospheric CO
    Hirschel G; Körner C; Arnone Iii JA
    Oecologia; 1997 Apr; 110(3):387-392. PubMed ID: 28307228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.
    Liu J; Fang X; Deng Q; Han T; Huang W; Li Y
    Sci Rep; 2015 Jan; 5():7952. PubMed ID: 25608664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.
    Hines J; Eisenhauer N; Drake BG
    Glob Chang Biol; 2015 Dec; 21(12):4642-50. PubMed ID: 25953075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial abundance and composition influence litter decomposition response to environmental change.
    Allison SD; Lu Y; Weihe C; Goulden ML; Martiny AC; Treseder KK; Martiny JB
    Ecology; 2013 Mar; 94(3):714-25. PubMed ID: 23687897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.
    Schuster MJ
    Oecologia; 2016 Mar; 180(3):645-55. PubMed ID: 26216200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.
    Cha S; Chae HM; Lee SH; Shim JK
    PLoS One; 2017; 12(2):e0171197. PubMed ID: 28182638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A prolonged dry season and nitrogen deposition interactively affect CO
    Nogueira C; Werner C; Rodrigues A; Caldeira MC
    Sci Total Environ; 2019 Mar; 654():978-986. PubMed ID: 30453267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of climate and litter quality on leaf litter decomposition in different climatic zones.
    Zhang X; Wang W
    J Plant Res; 2015 Sep; 128(5):791-802. PubMed ID: 26135888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.
    AbdElgawad H; Peshev D; Zinta G; Van den Ende W; Janssens IA; Asard H
    PLoS One; 2014; 9(3):e92044. PubMed ID: 24670435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.