These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15558349)

  • 1. Antifungal and sprout regulatory bioactivities of phenylacetic acid, indole-3-acetic acid, and tyrosol isolated from the potato dry rot suppressive bacterium Enterobacter cloacae S11:T:07.
    Slininger PJ; Burkhead KD; Schisler DA
    J Ind Microbiol Biotechnol; 2004 Dec; 31(11):517-24. PubMed ID: 15558349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea.
    Khare E; Arora NK
    Curr Microbiol; 2010 Jul; 61(1):64-8. PubMed ID: 20049597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis.
    Somers E; Ptacek D; Gysegom P; Srinivasan M; Vanderleyden J
    Appl Environ Microbiol; 2005 Apr; 71(4):1803-10. PubMed ID: 15812004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii.
    Yu T; Chen J; Lu H; Zheng X
    Phytopathology; 2009 Mar; 99(3):258-64. PubMed ID: 19203278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii.
    Wang M; Tachibana S; Murai Y; Li L; Lau SY; Cao M; Zhu G; Hashimoto M; Hashidoko Y
    Sci Rep; 2016 Mar; 6():22596. PubMed ID: 26935539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.
    Abraham J; Silambarasan S
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3336-48. PubMed ID: 25638268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities.
    Sessitsch A; Reiter B; Berg G
    Can J Microbiol; 2004 Apr; 50(4):239-49. PubMed ID: 15213748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.
    Parsons CV; Harris DM; Patten CL
    FEMS Microbiol Lett; 2015 Sep; 362(18):fnv153. PubMed ID: 26347301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers.
    Li YC; Bi Y; Ge YH; Sun XJ; Wang Y
    J Food Sci; 2009 Jun; 74(5):M213-8. PubMed ID: 19646050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Indoleacetic acid levels in the potato organs during various stages of ontogenesis and the role their dynamics in the tuber growth regulation].
    Puzina TI; Kirillova IG; Iakushkina NI
    Izv Akad Nauk Ser Biol; 2000; (2):170-7. PubMed ID: 10780109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5.
    Qi T; Gu G; Xu L; Xiao M; Lu L
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4995-5003. PubMed ID: 28361236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Indole-3-Acetic Acid by
    Srisuk N; Sakpuntoon V; Nutaratat P
    J Microbiol Biotechnol; 2018 Sep; 28(9):1511-1516. PubMed ID: 30369114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Identification of phenylacetic acid produced by Fusarium oxysporum f. sp. albedinis, the causal agent of bayoud, using GC-MS].
    Ait Kettout T; Rahmania F
    C R Biol; 2010; 333(11-12):808-13. PubMed ID: 21146137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of the major antifungal substance against Fusarium Sporotrichioides from Chaetomium globosum.
    Jiang C; Song J; Zhang J; Yang Q
    World J Microbiol Biotechnol; 2017 Jun; 33(6):108. PubMed ID: 28466302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Isolation and screening of beneficial endophytic bacteria to control bacterial ring rot of potato].
    Yuan J; Sun F; Tian H; Cui L; Zhao T
    Wei Sheng Wu Xue Bao; 2002 Jun; 42(3):270-4. PubMed ID: 12557365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrrolnitrin Production by Biological Control Agent Pseudomonas cepacia B37w in Culture and in Colonized Wounds of Potatoes.
    Burkhead KD; Schisler DA; Slininger PJ
    Appl Environ Microbiol; 1994 Jun; 60(6):2031-9. PubMed ID: 16349289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines.
    Madmony A; Chernin L; Pleban S; Peleg E; Riov J
    Folia Microbiol (Praha); 2005; 50(3):209-16. PubMed ID: 16295659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16.
    Kaur T; Manhas RK
    J Basic Microbiol; 2014 Nov; 54(11):1175-85. PubMed ID: 23765423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato.
    Corcuff R; Mercier J; Tweddell R; Arul J
    Fungal Biol; 2011 Mar; 115(3):220-7. PubMed ID: 21354528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.