These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15558373)

  • 21. Some biomechanical aspects of crutch and cane walking: the relationship between forward rate of progression, symmetry, and efficiency--a case report.
    McDonough AL; Razza-Doherty M
    Clin Podiatr Med Surg; 1988 Jul; 5(3):677-93. PubMed ID: 3395953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does crutch length influence gait parameters after total hip replacement surgery?
    Freddolini M; Esposito F; Marcucci M; Corvi A; Braccio P; Latella L
    Gait Posture; 2018 Feb; 60():262-267. PubMed ID: 28711361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy expenditure during gait using the walkabout and isocentric reciprocal gait orthoses in persons with paraplegia.
    Harvey LA; Davis GM; Smith MB; Engel S
    Arch Phys Med Rehabil; 1998 Aug; 79(8):945-9. PubMed ID: 9710167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy cost, exercise intensity, and gait efficiency of standard versus rocker-bottom axillary crutch walking.
    Nielsen DH; Harris JM; Minton YM; Motley NS; Rowley JL; Wadsworth CT
    Phys Ther; 1990 Aug; 70(8):487-93. PubMed ID: 2374777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Is it possible to propose the abolition of crutches according to the gait speed in patients with total knee arthroplasty?].
    Dauty M; Bazin P; Prioux J; Grandet MJ; Potiron-Josse M; Dubois C
    Ann Readapt Med Phys; 2003 Mar; 46(2):91-6. PubMed ID: 12676414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical study on axillary crutches during single-leg swing-through gait.
    Goh JC; Toh SL; Bose K
    Prosthet Orthot Int; 1986 Aug; 10(2):89-95. PubMed ID: 3774516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
    Zhang Y; Liu G; Xie S; Liger A
    Assist Technol; 2011; 23(4):225-31. PubMed ID: 22256671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait rehabilitation: a new biofeedback device for monitoring and enhancing weight-bearing over the affected lower limb.
    Isakov E
    Eura Medicophys; 2007 Mar; 43(1):21-6. PubMed ID: 17021589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The technique of reciprocal walking using the hip guidance orthosis (hgo) with crutches.
    Butler PB; Major RE; Patrick JH
    Prosthet Orthot Int; 1984 Apr; 8(1):33-8. PubMed ID: 6718236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determinants of gait performance following spinal cord injury.
    Waters RL; Yakura JS; Adkins R; Barnes G
    Arch Phys Med Rehabil; 1989 Nov; 70(12):811-8. PubMed ID: 2818152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity trackers are not valid for step count registration when walking with crutches.
    De Ridder R; De Blaiser C
    Gait Posture; 2019 May; 70():30-32. PubMed ID: 30798092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic parameters of three-point crutch gait in female patients after total hip arthroplasty.
    Murawa M; Dworak LB; Kabaciński J; Syczewska M; Rzepnicka A
    Acta Bioeng Biomech; 2016; 18(2):131-5. PubMed ID: 27405882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
    Clark BC; Manini TM; Ordway NR; Ploutz-Snyder LL
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1555-60. PubMed ID: 15375835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vannini-Rizzoli stabilizing orthosis (boot): preliminary report on a new ambulatory aid for spinal cord injury.
    Kent HO
    Arch Phys Med Rehabil; 1992 Mar; 73(3):302-7. PubMed ID: 1543438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new upper extremity sparing non-weight bearing orthosis.
    Yilmaz C; Dal U; Erdoğan AT; Colak M
    Gait Posture; 2010 Oct; 32(4):661-3. PubMed ID: 20813531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical evaluation of the rocker bottom crutch.
    Basford JR; Rhetta HL; Schleusner MP
    Orthopedics; 1990 Apr; 13(4):457-60. PubMed ID: 2185461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axillary versus Forearm Crutches: A Prospective Cohort Comparing which is Superior for 3-Point Crutch Gait.
    Yap W; Hairodin Z; Kwek E
    Malays Orthop J; 2021 Jul; 15(2):36-42. PubMed ID: 34429820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodynamic feedback training to assure learning partial load bearing on forearm crutches.
    Krause D; Wünnemann M; Erlmann A; Hölzchen T; Mull M; Olivier N; Jöllenbeck T
    Arch Phys Med Rehabil; 2007 Jul; 88(7):901-6. PubMed ID: 17601472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.
    Burdett RG; Borello-France D; Blatchly C; Potter C
    Phys Ther; 1988 Aug; 68(8):1197-203. PubMed ID: 3399515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.