These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1555850)
1. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. Chen JY; Gandhi OP IEEE Trans Biomed Eng; 1992 Mar; 39(3):209-16. PubMed ID: 1555850 [TBL] [Abstract][Full Text] [Related]
2. Comments on "Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors". Hagmann MJ IEEE Trans Biomed Eng; 1992 Dec; 39(12):1322-4. PubMed ID: 1487298 [No Abstract] [Full Text] [Related]
3. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz. Findlay RP; Dimbylow PJ Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. Furse CM; Iskander MF IEEE Trans Biomed Eng; 1989 Oct; 36(10):977-86. PubMed ID: 2793198 [TBL] [Abstract][Full Text] [Related]
5. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement. Clibbon KL; McCowen A; Hand JW IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284 [TBL] [Abstract][Full Text] [Related]
6. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure. Keshvari J; Keshvari R; Lang S Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956 [TBL] [Abstract][Full Text] [Related]
7. Time-reversal focusing in microwave hyperthermia for deep-seated tumors. Trefná HD; Vrba J; Persson M Phys Med Biol; 2010 Apr; 55(8):2167-85. PubMed ID: 20348605 [TBL] [Abstract][Full Text] [Related]
8. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240 [TBL] [Abstract][Full Text] [Related]
9. Calculations of heating patterns of an array of microwave interstitial antennas. Cherry PC; Iskander MF IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443 [TBL] [Abstract][Full Text] [Related]
10. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets. Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581 [TBL] [Abstract][Full Text] [Related]
11. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks. Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia. Fenn AJ; King GA IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom. Paulides MM; Wielheesen DH; Van der Zee J; Van Rhoon GC Int J Hyperthermia; 2005 Mar; 21(2):125-40. PubMed ID: 15764355 [TBL] [Abstract][Full Text] [Related]
14. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. Shaw JA; Durney CH; Christensen DA IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734 [TBL] [Abstract][Full Text] [Related]
15. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620 [TBL] [Abstract][Full Text] [Related]
16. Steering in locoregional deep hyperthermia: evaluation of common practice with 3D-planning. van der Wal E; Franckena M; Wielheesen DH; van der Zee J; van Rhoon GC Int J Hyperthermia; 2008 Dec; 24(8):682-93. PubMed ID: 19065346 [TBL] [Abstract][Full Text] [Related]
17. Calculation of absorbed power in tissue for various hyperthermia devices. Strohbehn JW Cancer Res; 1984 Oct; 44(10 Suppl):4781s-4787s. PubMed ID: 6467230 [TBL] [Abstract][Full Text] [Related]
18. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Crezee J; Van Haaren PM; Westendorp H; De Greef M; Kok HP; Wiersma J; Van Stam G; Sijbrands J; Zum Vörde Sive Vörding P; Van Dijk JD; Hulshof MC; Bel A Int J Hyperthermia; 2009 Nov; 25(7):581-92. PubMed ID: 19848620 [TBL] [Abstract][Full Text] [Related]
19. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study. Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652 [TBL] [Abstract][Full Text] [Related]
20. [The influencing factors and interfering effects in the control of the power distributions with the BSD-20000 hyperthermia ring system. 1. The clinical observables and phantom measurements]. Wust P; Nadobny J; Fähling H; Riess H; Koch K; John W; Felix R Strahlenther Onkol; 1990 Dec; 166(12):822-30. PubMed ID: 2267660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]