These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1555862)

  • 1. Use of impedance ratio for the continuous measurement of stroke volume of a valveless pouch used as a cardiac-assist device.
    Geddes LA; Janas W; Badylak SF
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):310-3. PubMed ID: 1555862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of electrical impedance for continuous measurement of stroke volume of a skeletal muscle-powered cardiac assist device.
    Wessale JL; Geddes LA; Badylak SF; Janas W
    Med Biol Eng Comput; 1991 Mar; 29(2):207-11. PubMed ID: 1857127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models.
    Wang L; Patterson R
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):141-8. PubMed ID: 7868141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the left ventricular assist device on right ventricular function.
    Elbeery JR; Owen CH; Savitt MA; Davis JW; Feneley MP; Rankin JS; VanTrigt P
    J Thorac Cardiovasc Surg; 1990 May; 99(5):809-16. PubMed ID: 2329818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of synchronized cardiac assist device on cardiac energetics.
    Landesberg A; Shenhav A; Shofty R; Konyukhov E; Levy C; Lichtenstein O; Beyar R; ter Keurs HE; Landesberg G; Cabrera M; Stanley W; Saidel GM
    Ann N Y Acad Sci; 2006 Oct; 1080():466-78. PubMed ID: 17132802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear conductance-volume relationship for murine conductance catheter measurement system.
    Wei CL; Valvano JW; Feldman MD; Pearce JA
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1654-61. PubMed ID: 16235651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of changes in cardiac output from the electrical impedance waveform in the forearm.
    Wang JJ; Wang PW; Liu CP; Lin SK; Hu WC; Kao T
    Physiol Meas; 2007 Sep; 28(9):989-99. PubMed ID: 17827648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.
    Slaughter MS; Sobieski MA; Koenig SC; Pappas PS; Tatooles AJ; Silver MA
    ASAIO J; 2006; 52(3):228-33. PubMed ID: 16760709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular pressure-volume loop analysis during continuous cardiac assist in acute animal trials.
    Moscato F; Vollkron M; Bergmeister H; Wieselthaler G; Leonard E; Schima H
    Artif Organs; 2007 May; 31(5):369-76. PubMed ID: 17470206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic control algorithm for the optimal driving of the ventricular-assist device.
    Yoshizawa M; Takeda H; Watanabe T; Miura M; Yambe T; Katahira Y; Nitta S
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):243-52. PubMed ID: 1555854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling.
    Bao JZ; Davis CC; Schmukler RE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):364-78. PubMed ID: 8375873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error analysis of tissue resistivity measurement.
    Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 May; 49(5):484-94. PubMed ID: 12002180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.
    Cao H; Tungjitkusolmun S; Choy YB; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 Mar; 49(3):247-53. PubMed ID: 11876289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The measurement of cardia output by the thoracic impedance method.
    Adamicza A; Tutsek L; Nagy S
    Acta Physiol Hung; 1988; 71(3):395-408. PubMed ID: 3421117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field penetration depth of myocardial surface catheters and the measurement of myocardial resistivity.
    Kottam A; Pearce JA
    Biomed Sci Instrum; 2004; 40():155-60. PubMed ID: 15133951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive monitoring of transient cardiac changes with impedance cardiography.
    Zhang H; Li JK
    Cardiovasc Eng; 2008 Dec; 8(4):225-31. PubMed ID: 19130223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new geometric factor for in situ resistivity measurement using four slender cylindrical electrodes.
    Chong CE; Tan YL
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):594-602. PubMed ID: 18269995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of apparent resistance of four-electrode probes on insertion depth.
    Tsai JZ; Cao H; Tungjitkusolmun S; Woo EJ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):41-8. PubMed ID: 10646278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.