BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 15558720)

  • 1. Integration and segregation of inputs to higher-order neuropils of the crayfish brain.
    Sullivan JM; Beltz BS
    J Comp Neurol; 2005 Jan; 481(1):118-26. PubMed ID: 15558720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of the brain's superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body.
    Phillips-Portillo J; Strausfeld NJ
    J Comp Neurol; 2012 Oct; 520(14):3070-87. PubMed ID: 22434505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe.
    Ngo KT; Andrade I; Hartenstein V
    Dev Biol; 2017 Aug; 428(1):1-24. PubMed ID: 28533086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain.
    Marin EC; Büld L; Theiss M; Sarkissian T; Roberts RJV; Turnbull R; Tamimi IFM; Pleijzier MW; Laursen WJ; Drummond N; Schlegel P; Bates AS; Li F; Landgraf M; Costa M; Bock DD; Garrity PA; Jefferis GSXE
    Curr Biol; 2020 Aug; 30(16):3167-3182.e4. PubMed ID: 32619476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.
    Omoto JJ; Keleş MF; Nguyen BM; Bolanos C; Lovick JK; Frye MA; Hartenstein V
    Curr Biol; 2017 Apr; 27(8):1098-1110. PubMed ID: 28366740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The central complex of the flesh fly, Neobellieria bullata: recordings and morphologies of protocerebral inputs and small-field neurons.
    Phillips-Portillo J
    J Comp Neurol; 2012 Oct; 520(14):3088-104. PubMed ID: 22528883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information.
    Montgomery SH; Ott SR
    J Comp Neurol; 2015 Apr; 523(6):869-91. PubMed ID: 25400217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The brain in three crustaceans from cavernous darkness.
    Stegner ME; Stemme T; Iliffe TM; Richter S; Wirkner CS
    BMC Neurosci; 2015 Apr; 16():19. PubMed ID: 25880533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain organization and the origin of insects: an assessment.
    Strausfeld NJ
    Proc Biol Sci; 2009 Jun; 276(1664):1929-37. PubMed ID: 19324805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the
    Garner D; Kind E; Nern A; Houghton L; Zhao A; Sancer G; Rubin GM; Wernet MF; Kim SS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of visual inputs to Kenyon cells of the
    Ganguly I; Heckman EL; Litwin-Kumar A; Clowney EJ; Behnia R
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do the mushroom bodies do for the insect brain? an introduction.
    Heisenberg M
    Learn Mem; 1998; 5(1-2):1-10. PubMed ID: 10454369
    [No Abstract]   [Full Text] [Related]  

  • 13. Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species.
    Drozd D; Wolf H; Stemme T
    PLoS One; 2020; 15(12):e0243753. PubMed ID: 33301509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mushroom body evolution demonstrates homology and divergence across Pancrustacea.
    Strausfeld NJ; Wolff GH; Sayre ME
    Elife; 2020 Mar; 9():. PubMed ID: 32124731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers.
    Machon J; Krieger J; Meth R; Zbinden M; Ravaux J; Montagné N; Chertemps T; Harzsch S
    Elife; 2019 Aug; 8():. PubMed ID: 31383255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse.
    Shipley AT; Imeh-Nathaniel A; Orfanakos VB; Wormack LN; Huber R; Nathaniel TI
    Front Physiol; 2017; 8():1007. PubMed ID: 29270131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Blood to Brain: Adult-Born Neurons in the Crayfish Brain Are the Progeny of Cells Generated by the Immune System.
    Beltz BS; Benton JL
    Front Neurosci; 2017; 11():662. PubMed ID: 29270102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An insect-like mushroom body in a crustacean brain.
    Wolff GH; Thoen HH; Marshall J; Sayre ME; Strausfeld NJ
    Elife; 2017 Sep; 6():. PubMed ID: 28949916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection?
    Beltz BS; Zhang Y; Benton JL; Sandeman DC
    Eur J Neurosci; 2011 Sep; 34(6):870-83. PubMed ID: 21929622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. d-Amphetamine stimulates unconditioned exploration/approach behaviors in crayfish: towards a conserved evolutionary function of ancestral drug reward.
    Alcaro A; Panksepp J; Huber R
    Pharmacol Biochem Behav; 2011 Jul; 99(1):75-80. PubMed ID: 21504757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.