These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15558781)

  • 41. Stimulus- and goal-driven biases of selective attention following unilateral brain damage: implications for rehabilitation of spatial neglect and extinction.
    Snow JC; Mattingley JB
    Restor Neurol Neurosci; 2006; 24(4-6):233-45. PubMed ID: 17119301
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study.
    Lévesque J; Beauregard M; Mensour B
    Neurosci Lett; 2006 Feb; 394(3):216-21. PubMed ID: 16343769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Common neural substrates for the control and effects of visual attention and perceptual bistability.
    Slotnick SD; Yantis S
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):97-108. PubMed ID: 15922162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies.
    Porro CA; Lui F; Facchin P; Maieron M; Baraldi P
    Magn Reson Imaging; 2004 Dec; 22(10):1539-48. PubMed ID: 15707803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites.
    Fairhall SL; Macaluso E
    Eur J Neurosci; 2009 Mar; 29(6):1247-57. PubMed ID: 19302160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade.
    Nigg JT
    Biol Psychiatry; 2005 Jun; 57(11):1424-35. PubMed ID: 15950017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting unilateral neglect.
    Danckert J; Ferber S
    Neuropsychologia; 2006; 44(6):987-1006. PubMed ID: 16300805
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of attentional networks: an fMRI study with children and adults.
    Konrad K; Neufang S; Thiel CM; Specht K; Hanisch C; Fan J; Herpertz-Dahlmann B; Fink GR
    Neuroimage; 2005 Nov; 28(2):429-39. PubMed ID: 16122945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cortical basis of communication: local computation, coordination, attention.
    Alexandre F
    Neural Netw; 2009 Mar; 22(2):126-33. PubMed ID: 19217253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atypical hemispheric dominance for attention: functional MRI topography.
    Flöel A; Jansen A; Deppe M; Kanowski M; Konrad C; Sommer J; Knecht S
    J Cereb Blood Flow Metab; 2005 Sep; 25(9):1197-208. PubMed ID: 15815582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Attention rivalry under irrelevant audiovisual stimulation.
    Feng T; Qiu Y; Zhu Y; Tong S
    Neurosci Lett; 2008 Jun; 438(1):6-9. PubMed ID: 18482799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence.
    Crottaz-Herbette S; Menon V
    J Cogn Neurosci; 2006 May; 18(5):766-80. PubMed ID: 16768376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling divided visual attention with a winner-take-all network.
    Standage DI; Trappenberg TP; Klein RM
    Neural Netw; 2005; 18(5-6):620-7. PubMed ID: 16087317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cognitive control of attention in the human brain: insights from orienting attention to mental representations.
    Lepsien J; Nobre AC
    Brain Res; 2006 Aug; 1105(1):20-31. PubMed ID: 16729979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies.
    Carrasco M
    Prog Brain Res; 2006; 154():33-70. PubMed ID: 17010702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased functional magnetic resonance imaging activity during nonconscious perception in the attentional blink.
    Shapiro KL; Johnston SJ; Vogels W; Zaman A; Roberts N
    Neuroreport; 2007 Mar; 18(4):341-5. PubMed ID: 17435599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paradoxical cross-over due to attention to high or low spatial frequencies.
    Niemeier M; Stojanoski B; Singh VW; Chu E
    Brain Cogn; 2008 Jun; 67(1):115-25. PubMed ID: 18243459
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus.
    Molenberghs P; Mesulam MM; Peeters R; Vandenberghe RR
    Cereb Cortex; 2007 Nov; 17(11):2703-12. PubMed ID: 17264251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.