These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15560015)

  • 1. 133Xe for the in vivo X-ray fluorescence measurement of platinum.
    Ogg CA; Ali PA; El-Sharkawi AM; Hancock DA
    Phys Med Biol; 1994 Nov; 39(11):2105-12. PubMed ID: 15560015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of a polarised X-ray source for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Bennet C; el-Sharkawi AM; Hancock DA
    Appl Radiat Isot; 1998; 49(5-6):647-50. PubMed ID: 9569567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.
    Al-Ghorabie FH; Natto SS; Al-Lyhiani SH
    Comput Biol Med; 2001 Mar; 31(2):73-83. PubMed ID: 11165216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 133Xe for the x-ray fluorescence assessment of gold in vivo.
    Scott J; Lillicrap S
    Phys Med Biol; 1988 Jul; 33(7):859-64. PubMed ID: 3212045
    [No Abstract]   [Full Text] [Related]  

  • 5. Evaluation of 133Xe for x-ray fluorescence analysis of cadmium in vivo: a Monte Carlo study.
    al-Ghorabie FH
    Radiat Environ Biophys; 2000 Jun; 39(2):141-5. PubMed ID: 10929384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of a fluorescent X-ray source for in vivo X-ray fluorescence measurements of kidney and liver cadmium.
    Börjesson J; Olsson M; Mattsson S
    Ann N Y Acad Sci; 2000 May; 904():255-8. PubMed ID: 10865750
    [No Abstract]   [Full Text] [Related]  

  • 7. Application of the fundamental parameter method to the in vivo x-ray fluorescence analysis of Pt.
    Szalóki I; Lewis DG; Bennett CA; Kilic A
    Phys Med Biol; 1999 May; 44(5):1245-55. PubMed ID: 10368016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo measurement of platinum in the kidneys using X-ray fluorescence.
    Kadhim R; al-Hussany A; Ali PA; Hancock DA; el-Sharkawi AM
    Ann N Y Acad Sci; 2000 May; 904():263-6. PubMed ID: 10865752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using x-ray fluorescence.
    Spitz H; Jenkins M; Lodwick J; Bornschein R
    Health Phys; 2000 Feb; 78(2):159-69. PubMed ID: 10647982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo X-ray fluorescence (XRF) measurement of uranium in bone.
    O'Meara JM; Chettle DR; McNeill FE; Webber CE
    Appl Radiat Isot; 1998; 49(5-6):713-5. PubMed ID: 9569588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plane polarized x-ray fluorescence system for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Al-Hussany AF; Bennett CA; Hancock DA; El-Sharkawi AM
    Phys Med Biol; 1998 Aug; 43(8):2337-45. PubMed ID: 9725608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phantom-based feasibility study for detection of gadolinium in bone in-vivo using X-ray fluorescence.
    Lord ML; McNeill FE; Gräfe JL; Noseworthy MD; Chettle DR
    Appl Radiat Isot; 2016 Jun; 112():103-9. PubMed ID: 27019028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.
    Fleming DE; Ware CS
    Appl Radiat Isot; 2017 Mar; 121():91-95. PubMed ID: 28040603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved signal-to-noise ratio for non-perpendicular detection angles in x-ray fluorescence computed tomography (XFCT).
    Sjölin M; Danielsson M
    Phys Med Biol; 2014 Nov; 59(21):6507-20. PubMed ID: 25310695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new Monte Carlo program for computing low-energy gamma- and X-ray propagation in an axially-symmetric XRF system. Swansea In Vivo Analysis and Cancer (SIVAC) Group.
    Evans CJ; Shamsaie M; Ghara'ati H; Ali PA
    Appl Radiat Isot; 1998; 49(5-6):559-60. PubMed ID: 9606085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.