These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 15560204)
1. Micro-algae as potent rumen methane inhibitors and modifiers of rumen lipolysis and biohydrogenation of linoleic acid. Boeckaert C; Mestdagh J; Clayton D; Fievez V Commun Agric Appl Biol Sci; 2004; 69(2):127-30. PubMed ID: 15560204 [No Abstract] [Full Text] [Related]
2. Accumulation of biohydrogenation intermediates and changes in the rumen protozoal population after micro algae feeding to dairy cattle. Boeckaert C; Boon N; Abdulsudi IZ; Verstraete W; Fievez V Commun Agric Appl Biol Sci; 2006; 71(1):83-6. PubMed ID: 17191479 [No Abstract] [Full Text] [Related]
3. Effect and working mechanism of DHA on rumen biohydrogenation of linoleic acid and implications for milk fat optimisation. Boeckaert C; Boon N; Verstraete W; Fievez V Commun Agric Appl Biol Sci; 2007; 72(1):19-22. PubMed ID: 18018853 [No Abstract] [Full Text] [Related]
4. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bozic AK; Anderson RC; Carstens GE; Ricke SC; Callaway TR; Yokoyama MT; Wang JK; Nisbet DJ Bioresour Technol; 2009 Sep; 100(17):4017-25. PubMed ID: 19362827 [TBL] [Abstract][Full Text] [Related]
5. Increased expression of a molecular chaperone GroEL in response to unsaturated fatty acids by the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. Devillard E; Andant N; John Wallace R FEMS Microbiol Lett; 2006 Sep; 262(2):244-8. PubMed ID: 16923082 [TBL] [Abstract][Full Text] [Related]
6. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Troegeler-Meynadier A; Bret-Bennis L; Enjalbert F Reprod Nutr Dev; 2006; 46(6):713-24. PubMed ID: 17169317 [TBL] [Abstract][Full Text] [Related]
7. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Anderson RC; Carstens GE; Miller RK; Callaway TR; Schultz CL; Edrington TS; Harvey RB; Nisbet DJ Bioresour Technol; 2006 Dec; 97(18):2421-6. PubMed ID: 16303299 [TBL] [Abstract][Full Text] [Related]
8. In vitro study of lipolysis and biohydrogenation in cattle: which inoculum to use? Chow TT; Fievez V; Raes K; Demeyer D; De Smet S Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):305-8. PubMed ID: 15954309 [No Abstract] [Full Text] [Related]
9. Clover saponins as methane inhibitors and their effect on rumen n utilisation efficiency as studied in vitro and in vivo. Fievez V; Dragomir C; Mbanzamihigo L; Demeyer D Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):299-304. PubMed ID: 15954308 [No Abstract] [Full Text] [Related]
10. In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. Christophersen CT; Wright AD; Vercoe PE J Anim Sci; 2008 Feb; 86(2):384-9. PubMed ID: 18042816 [TBL] [Abstract][Full Text] [Related]
11. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. Trei JE; Parish RC; Singh YK J Dairy Sci; 1971 Apr; 54(4):536-40. PubMed ID: 5570090 [No Abstract] [Full Text] [Related]
12. Effect of feeding rumen-protected conjugated linoleic acid on carcass characteristics and fatty acid composition of sheep tissues. Wynn RJ; Daniel ZC; Flux CL; Craigon J; Salter AM; Buttery PJ J Anim Sci; 2006 Dec; 84(12):3440-50. PubMed ID: 17093239 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of labeled linoleic-1-C-14 acid in the sheep rumen. Wood RD; Bell MC; Grainger RB; Teekell RA J Nutr; 1963 Jan; 79(1):62-8. PubMed ID: 14001756 [No Abstract] [Full Text] [Related]
14. Microbial fatty acid conversion within the rumen and the subsequent utilization of these fatty acids to improve the healthfulness of ruminant food products. Or-Rashid MM; Wright TC; McBride BW Appl Microbiol Biotechnol; 2009 Oct; 84(6):1033-43. PubMed ID: 19685048 [TBL] [Abstract][Full Text] [Related]
15. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid. Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620 [TBL] [Abstract][Full Text] [Related]
16. Clostridium proteoclasticum: A ruminal bacterium that forms stearic acid from linoleic acid. John Wallace R; Chaudhary LC; McKain N; McEwan NR; Richardson AJ; Vercoe PE; Walker ND; Paillard D FEMS Microbiol Lett; 2006 Dec; 265(2):195-201. PubMed ID: 17147764 [TBL] [Abstract][Full Text] [Related]
17. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Guo YQ; Liu JX; Lu Y; Zhu WY; Denman SE; McSweeney CS Lett Appl Microbiol; 2008 Nov; 47(5):421-6. PubMed ID: 19146532 [TBL] [Abstract][Full Text] [Related]
18. The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle. Yáñez-Ruiz DR; Williams S; Newbold CJ Br J Nutr; 2007 May; 97(5):938-48. PubMed ID: 17381978 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a novel strain of Butyrivibrio fibrisolvens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T J Appl Microbiol; 2006 Apr; 100(4):787-94. PubMed ID: 16553734 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen microorganisms. Kellens MJ; Goderis HL; Tobback PP Biotechnol Bioeng; 1986 Aug; 28(8):1268-76. PubMed ID: 18555456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]