These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15560475)

  • 21. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model.
    Baczek T; Kaliszan R; Novotná K; Jandera P
    J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of Bayesian nonlinear regression techniques for the modelling of the retention behaviour of volatile components of Artemisia species.
    Jalali-Heravi M; Mani-Varnosfaderani A; Taherinia D; Mahmoodi MM
    SAR QSAR Environ Res; 2012 Jul; 23(5-6):461-83. PubMed ID: 22452344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives.
    Gackowski M; Szewczyk-Golec K; Pluskota R; Koba M; Mądra-Gackowska K; Woźniak A
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-(chromatographic) retention relationship models for dissociating compounds.
    Kubik Ł; Wiczling P
    J Pharm Biomed Anal; 2016 Aug; 127():176-83. PubMed ID: 26960942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive approaches to gradient retention based on analyte structural descriptors from calculation chemistry.
    Baczek T; Kaliszan R
    J Chromatogr A; 2003 Feb; 987(1-2):29-37. PubMed ID: 12613794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Bayesian Multilevel Modeling in the Quantitative Structure-Retention Relationship Studies of Heterogeneous Compounds.
    Wiczling P; Kamedulska A; Kubik Ł
    Anal Chem; 2021 May; 93(18):6961-6971. PubMed ID: 33905658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships.
    Kaliszan R; van Straten MA; Markuszewski M; Cramers CA; Claessens HA
    J Chromatogr A; 1999 Sep; 855(2):455-86. PubMed ID: 10519086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An introduction to multivariate adaptive regression splines.
    Friedman JH; Roosen CB
    Stat Methods Med Res; 1995 Sep; 4(3):197-217. PubMed ID: 8548103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biopartitioning micellar chromatography separation methods: modelling quantitative retention-activity relationships of cephalosporins.
    Wu LP; Ye LM; Chen C; Wu JQ; Chen Y
    Biomed Chromatogr; 2008 Jun; 22(6):606-15. PubMed ID: 18254154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography.
    Andries JP; Claessens HA; Heyden YV; Buydens LM
    Anal Chim Acta; 2009 Oct; 652(1-2):180-8. PubMed ID: 19786179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An application of QSRR approach and multiple linear regression method for lipophilicity assessment of flavonoids.
    Zapadka M; Kaczmarek M; Kupcewicz B; Dekowski P; Walkowiak A; Kokotkiewicz A; Łuczkiewicz M; Buciński A
    J Pharm Biomed Anal; 2019 Feb; 164():681-689. PubMed ID: 30476861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.
    Flieger J
    J Chromatogr A; 2010 Jan; 1217(4):540-9. PubMed ID: 19969302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns.
    Ahmed Al-Haj M; Kaliszan R; Buszewski B
    J Chromatogr Sci; 2001 Jan; 39(1):29-38. PubMed ID: 11206911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of lipophilic descriptors of antihelmintic 6,7-diaryl-pteridine derivatives useful for bioactivity predictions.
    Reta M; Giacomelli L; Santo M; Cattana R; Silber JJ; Ochoa C; Rodriguez M; Chana A
    Biomed Chromatogr; 2003 Sep; 17(6):365-72. PubMed ID: 13680846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different approaches to quantitative structure-retention relationships in the prediction of oligonucleotide retention.
    Studzińska S; Buszewski B
    J Sep Sci; 2015 Jun; 38(12):2076-84. PubMed ID: 25866200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of ionization and the nature of the mobile phase in quantitative structure-retention relationship studies.
    Ruiz-Angel MJ; Carda-Broch S; García-Alvarez-Coque MC; Berthod A
    J Chromatogr A; 2005 Jan; 1063(1-2):25-34. PubMed ID: 15700454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial neural networks in liquid chromatography: efficient and improved quantitative structure-retention relationship models.
    Loukas YL
    J Chromatogr A; 2000 Dec; 904(2):119-29. PubMed ID: 11204229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative structure-retention relationship studies for taxanes including epimers and isomeric metabolites in ultra fast liquid chromatography.
    Dong PP; Ge GB; Zhang YY; Ai CZ; Li GH; Zhu LL; Luan HW; Liu XB; Yang L
    J Chromatogr A; 2009 Oct; 1216(42):7055-62. PubMed ID: 19747683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.