BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1556064)

  • 1. Glucose catabolism by Spirochaeta thermophila RI 19.B1.
    Janssen PH; Morgan HW
    J Bacteriol; 1992 Apr; 174(8):2449-53. PubMed ID: 1556064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate metabolism in Spirochaeta stenostrepta.
    Hespell RB; Canale-Parola E
    J Bacteriol; 1970 Jul; 103(1):216-26. PubMed ID: 5423371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose and pyruvate metabolism of Spirochaeta litoralis, an anaerobic marine spirochete.
    Hespell RB; Canale-Parola E
    J Bacteriol; 1973 Nov; 116(2):931-7. PubMed ID: 4745435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.
    Takahashi N; Kalfas S; Yamada T
    J Bacteriol; 1995 Oct; 177(20):5806-11. PubMed ID: 7592327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming).
    Labes A; Schönheit P
    Arch Microbiol; 2001 Nov; 176(5):329-38. PubMed ID: 11702074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bicarbonate on the growth of Actinobacillus actinomycetemcomitans in anaerobic fructose-limited chemostat culture.
    Ohta H; Fukui K; Kato K
    J Gen Microbiol; 1989 Dec; 135(12):3485-95. PubMed ID: 2517636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium.
    Melville SB; Michel TA; Macy JM
    J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2.
    Marvin-Sikkema FD; Pedro Gomes TM; Grivet JP; Gottschal JC; Prins RA
    Arch Microbiol; 1993; 160(5):388-96. PubMed ID: 8257282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond.
    Greenberg EP; Canale-Parola E
    Arch Microbiol; 1976 Nov; 110(23):185-94. PubMed ID: 1015946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose fermentation pathway of Thermoanaerobium brockii.
    Lamed R; Zeikus JG
    J Bacteriol; 1980 Mar; 141(3):1251-7. PubMed ID: 6767705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway of glucose catabolism by strain VeGlc2, an anaerobe belonging to the verrucomicrobiales lineage of bacterial descent.
    Janssen PH
    Appl Environ Microbiol; 1998 Dec; 64(12):4830-3. PubMed ID: 9835570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic glucose and serine metabolism in Staphylococcus epidermidis.
    Sivakanesan R; Dawes EA
    J Gen Microbiol; 1980 May; 118(1):143-57. PubMed ID: 6775045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of L-tartrate by a newly isolated gram-negative glycolytic bacterium.
    Janssen PH
    Antonie Van Leeuwenhoek; 1991 Apr; 59(3):191-8. PubMed ID: 1867475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of Spirochaeta aurantia. I. Anaerobic energy-yielding pathways.
    Breznak JA; Canale-Parola E
    Arch Mikrobiol; 1972; 83(4):261-77. PubMed ID: 4261649
    [No Abstract]   [Full Text] [Related]  

  • 18. D-xylose catabolism in Bacteroides xylanolyticus X5-1.
    Biesterveld S; Kok MD; Dijkema C; Zehnder AJ; Stams AJ
    Arch Microbiol; 1994; 161(6):521-7. PubMed ID: 8048843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway.
    Thompson TE; Zeikus JG
    J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.