BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 1556136)

  • 1. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure.
    Sumikawa K; Gehle VM
    J Biol Chem; 1992 Mar; 267(9):6286-90. PubMed ID: 1556136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits.
    Gehle VM; Sumikawa K
    Brain Res Mol Brain Res; 1991 Aug; 11(1):17-25. PubMed ID: 1662742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors.
    Gehle VM; Walcott EC; Nishizaki T; Sumikawa K
    Brain Res Mol Brain Res; 1997 May; 45(2):219-29. PubMed ID: 9149096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved disulfide loop facilitates conformational maturation in the subunits of the acetylcholine receptor.
    Walcott EC; Sumikawa K
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):289-300. PubMed ID: 8883962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression.
    Buller AL; White MM
    Mol Pharmacol; 1990 Mar; 37(3):423-8. PubMed ID: 1690347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-channel properties of mouse-Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes.
    Yu L; Leonard RJ; Davidson N; Lester HA
    Brain Res Mol Brain Res; 1991 Jun; 10(3):203-11. PubMed ID: 1715966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential interactions of gentamicin with mouse junctional and extrajunctional ACh receptors expressed in Xenopus oocytes.
    Nishizaki T; Morales A; Gehle VM; Sumikawa K
    Brain Res Mol Brain Res; 1994 Jan; 21(1-2):99-106. PubMed ID: 8164527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly.
    Blount P; Merlie JP
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2613-22. PubMed ID: 2277075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequences on the N-terminus of ACh receptor subunits regulate their assembly.
    Sumikawa K
    Brain Res Mol Brain Res; 1992 May; 13(4):349-53. PubMed ID: 1320723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and expression of the nicotinic acetylcholine receptor beta subunit of Xenopus laevis.
    Kullberg RW; Zheng YC; Todt W; Owens JL; Fraser SE; Mandel G
    Recept Channels; 1994; 2(1):23-31. PubMed ID: 8081730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric contribution of the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor.
    Fu DX; Sine SM
    J Biol Chem; 1996 Dec; 271(49):31479-84. PubMed ID: 8940161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant.
    Claudio T; Paulson HL; Green WN; Ross AF; Hartman DS; Hayden D
    J Cell Biol; 1989 Jun; 108(6):2277-90. PubMed ID: 2472403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse-Torpedo chimeric alpha-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence.
    Butler DH; Lasalde JA; Butler JK; Tamamizu S; Zimmerman G; McNamee MG
    Cell Mol Neurobiol; 1997 Feb; 17(1):13-33. PubMed ID: 9118205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subunit folding and alpha delta heterodimer formation in the assembly of the nicotinic acetylcholine receptor. Comparison of the mouse and human alpha subunits.
    Chavez RA; Maloof J; Beeson D; Newsom-Davis J; Hall ZW
    J Biol Chem; 1992 Nov; 267(32):23028-34. PubMed ID: 1429651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rearrangement of nicotinic receptor alpha subunits during formation of the ligand binding sites.
    Mitra M; Wanamaker CP; Green WN
    J Neurosci; 2001 May; 21(9):3000-8. PubMed ID: 11312284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The agonist binding site of the gamma-aminobutyric acid type A channel is not formed by the extracellular cysteine loop.
    Amin J; Dickerson IM; Weiss DS
    Mol Pharmacol; 1994 Feb; 45(2):317-23. PubMed ID: 7509443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of Torpedo acetylcholine receptors in Xenopus oocytes.
    Saedi MS; Conroy WG; Lindstrom J
    J Cell Biol; 1991 Mar; 112(5):1007-15. PubMed ID: 1999453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TE671 cells express an abundance of a partially mature acetylcholine receptor alpha subunit which has characteristics of an assembly intermediate.
    Conroy WG; Saedi MS; Lindstrom J
    J Biol Chem; 1990 Dec; 265(35):21642-51. PubMed ID: 2254320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological study on acetylcholine receptor expressed in Xenopus oocytes from cloned cDNAs.
    Takahashi T; Kuno M; Mishina M; Numa S
    J Physiol (Paris); 1985; 80(4):229-32. PubMed ID: 3834076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.