These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15561502)

  • 1. Gait-dependent motor memory facilitation in covert movement execution.
    Courtine G; Papaxanthis C; Gentili R; Pozzo T
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):67-75. PubMed ID: 15561502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mentally represented motor actions in normal aging. I. Age effects on the temporal features of overt and covert execution of actions.
    Skoura X; Papaxanthis C; Vinter A; Pozzo T
    Behav Brain Res; 2005 Dec; 165(2):229-39. PubMed ID: 16165229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis.
    Den Otter AR; Geurts AC; Mulder T; Duysens J
    Clin Neurophysiol; 2006 Jan; 117(1):4-15. PubMed ID: 16337186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions.
    Skoura X; Personnier P; Vinter A; Pozzo T; Papaxanthis C
    Cortex; 2008 Oct; 44(9):1271-8. PubMed ID: 18761141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal features of imagined locomotion in normal aging.
    Personnier P; Kubicki A; Laroche D; Papaxanthis C
    Neurosci Lett; 2010 Jun; 476(3):146-9. PubMed ID: 20399251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral correlates of motor imagery of normal and precision gait.
    Bakker M; De Lange FP; Helmich RC; Scheeringa R; Bloem BR; Toni I
    Neuroimage; 2008 Jul; 41(3):998-1010. PubMed ID: 18455930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overt and covert rehearsal in short-term motor memory of mentally retarded and nonretarded persons.
    Reid G
    Am J Ment Defic; 1980 Jul; 85(1):69-77. PubMed ID: 7446572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery influences the execution of repetitive finger opposition movements.
    Avanzino L; Giannini A; Tacchino A; Pelosin E; Ruggeri P; Bove M
    Neurosci Lett; 2009 Nov; 466(1):11-5. PubMed ID: 19770024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion.
    Saunders SW; Schache A; Rath D; Hodges PW
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):784-93. PubMed ID: 15975698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of stretch reflexes to locomotor control: a modeling study.
    Yakovenko S; Gritsenko V; Prochazka A
    Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral somatotopic organization during imagined and prepared movements.
    Michelon P; Vettel JM; Zacks JM
    J Neurophysiol; 2006 Feb; 95(2):811-22. PubMed ID: 16207787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits.
    Vereecke EE; D'Août K; Aerts P
    J Hum Evol; 2006 May; 50(5):552-67. PubMed ID: 16516949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of prolonged free-walking fatigue on gait and physiological rhythm.
    Yoshino K; Motoshige T; Araki T; Matsuoka K
    J Biomech; 2004 Aug; 37(8):1271-80. PubMed ID: 15212933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When unintended movements "leak" out: a startling acoustic stimulus can elicit a prepared response during motor imagery and action observation.
    Maslovat D; Chua R; Hodges NJ
    Neuropsychologia; 2013 Apr; 51(5):838-44. PubMed ID: 23376312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement and generalization of arm motor performance through motor imagery practice.
    Gentili R; Papaxanthis C; Pozzo T
    Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.