These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 1556157)

  • 1. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study.
    Kolodney MS; Wysolmerski RB
    J Cell Biol; 1992 Apr; 117(1):73-82. PubMed ID: 1556157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation.
    Goeckeler ZM; Wysolmerski RB
    J Cell Biol; 1995 Aug; 130(3):613-27. PubMed ID: 7622562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts.
    Kolodney MS; Elson EL
    J Biol Chem; 1993 Nov; 268(32):23850-5. PubMed ID: 8226923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of histamine and thrombin on endothelial barrier function through actin-myosin tension.
    Moy AB; Blackwell K; Kamath A
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H21-9. PubMed ID: 11748043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain.
    Kolodney MS; Elson EL
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10252-6. PubMed ID: 7479762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts.
    Arora PD; McCulloch CA
    J Cell Physiol; 1994 Apr; 159(1):161-75. PubMed ID: 8138584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction.
    Welch MP; Odland GF; Clark RA
    J Cell Biol; 1990 Jan; 110(1):133-45. PubMed ID: 2136860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of alpha-smooth muscle actin expression and contraction in Dupuytren's disease fibroblasts.
    Tomasek J; Rayan GM
    J Hand Surg Am; 1995 May; 20(3):450-5. PubMed ID: 7642925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels.
    Tomasek JJ; Hay ED
    J Cell Biol; 1984 Aug; 99(2):536-49. PubMed ID: 6146628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traction force dynamics predict gap formation in activated endothelium.
    Valent ET; van Nieuw Amerongen GP; van Hinsbergh VWM; Hordijk PL
    Exp Cell Res; 2016 Sep; 347(1):161-170. PubMed ID: 27498166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombin promotes aortic endothelial cell spreading and microfilament formation in nonconfluent monolayer cultures.
    Yu JC; Gotlieb AI
    Exp Mol Pathol; 1993 Apr; 58(2):139-52. PubMed ID: 8495717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfilament rearrangements during fibroblast-induced contraction of three-dimensional hydrated collagen gels.
    Farsi JM; Aubin JE
    Cell Motil; 1984; 4(1):29-40. PubMed ID: 6539173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model. Modulation of angiogenesis and collagen gel contraction.
    Villaschi S; Nicosia RF
    Lab Invest; 1994 Aug; 71(2):291-9. PubMed ID: 7521446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microtubules and microfilaments on [Ca(2+)](i) and contractility in a reconstituted fibroblast fiber.
    Obara K; Nobe K; Nobe H; Kolodney MS; De Lanerolle P; Paul RJ
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C785-96. PubMed ID: 10942729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isometric tension of cultured endothelial cells: new technical aspects.
    Bodmer JE; Van Engelenhoven J; Reyes G; Blackwell K; Kamath A; Shasby DM; Moy AB
    Microvasc Res; 1997 May; 53(3):261-71. PubMed ID: 9211404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.
    Morita T; Kurihara H; Maemura K; Yoshizumi M; Yazaki Y
    J Clin Invest; 1993 Oct; 92(4):1706-12. PubMed ID: 8408624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balanced mechanical forces and microtubule contribution to fibroblast contraction.
    Brown RA; Talas G; Porter RA; McGrouther DA; Eastwood M
    J Cell Physiol; 1996 Dec; 169(3):439-47. PubMed ID: 8952693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dissection of the fibroblast-traction machinery.
    Sawhney RK; Howard J
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):175-85. PubMed ID: 15146536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum.
    Tomasek JJ; Haaksma CJ; Eddy RJ; Vaughan MB
    Anat Rec; 1992 Mar; 232(3):359-68. PubMed ID: 1543260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretch-activated force shedding, force recovery, and cytoskeletal remodeling in contractile fibroblasts.
    Nekouzadeh A; Pryse KM; Elson EL; Genin GM
    J Biomech; 2008 Oct; 41(14):2964-71. PubMed ID: 18805531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.