These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15561759)

  • 1. Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases.
    Makino A; Glogauer M; Bokoch GM; Chien S; Schmid-Schönbein GW
    Am J Physiol Cell Physiol; 2005 Apr; 288(4):C863-71. PubMed ID: 15561759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The leukocyte response to fluid stress.
    Moazzam F; DeLano FA; Zweifach BW; Schmid-Schönbein GW
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5338-43. PubMed ID: 9144238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of fluid shear response in circulating leukocytes by integrins.
    Marschel P; Schmid-Schönbein GW
    Ann Biomed Eng; 2002 Mar; 30(3):333-43. PubMed ID: 12051618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukocyte fluid shear response in the presence of glucocorticoid.
    Fukuda S; Mitsuoka H; Schmid-Schönbein GW
    J Leukoc Biol; 2004 Apr; 75(4):664-70. PubMed ID: 14726499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis.
    Pestonjamasp KN; Forster C; Sun C; Gardiner EM; Bohl B; Weiner O; Bokoch GM; Glogauer M
    Blood; 2006 Oct; 108(8):2814-20. PubMed ID: 16809619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts.
    Wan Q; Cho E; Yokota H; Na S
    Biochem Biophys Res Commun; 2013 Apr; 433(4):502-7. PubMed ID: 23524265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases.
    Wojciak-Stothard B; Ridley AJ
    J Cell Biol; 2003 Apr; 161(2):429-39. PubMed ID: 12719476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress.
    Coughlin MF; Schmid-Schönbein GW
    Biophys J; 2004 Sep; 87(3):2035-42. PubMed ID: 15345579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction.
    Shin HY; Fukuda S; Schmid-Schönbein GW
    J Biomech; 2021 May; 120():110394. PubMed ID: 33784517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions.
    Li S; Yamauchi A; Marchal CC; Molitoris JK; Quilliam LA; Dinauer MC
    J Immunol; 2002 Nov; 169(9):5043-51. PubMed ID: 12391220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-activation of neutrophils in suspension by fluid shear stress: a requirement for erythrocytes.
    Komai Y; Schmid-Schönbein GW
    Ann Biomed Eng; 2005 Oct; 33(10):1375-86. PubMed ID: 16240086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rac GTPase isoform-specific regulation of NADPH oxidase and chemotaxis in murine neutrophils in vivo. Role of the C-terminal polybasic domain.
    Yamauchi A; Marchal CC; Molitoris J; Pech N; Knaus U; Towe J; Atkinson SJ; Dinauer MC
    J Biol Chem; 2005 Jan; 280(2):953-64. PubMed ID: 15504745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils.
    Makino A; Prossnitz ER; Bünemann M; Wang JM; Yao W; Schmid-Schönbein GW
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1633-9. PubMed ID: 16436471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for regulation of fluid shear stress response in circulating leukocytes.
    Fukuda S; Yasu T; Predescu DN; Schmid-Schönbein GW
    Circ Res; 2000 Jan; 86(1):E13-8. PubMed ID: 10625314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanotransduction in leukocyte activation: a review.
    Makino A; Shin HY; Komai Y; Fukuda S; Coughlin M; Sugihara-Seki M; Schmid-Schönbein GW
    Biorheology; 2007; 44(4):221-49. PubMed ID: 18094448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles.
    Yamauchi A; Kim C; Li S; Marchal CC; Towe J; Atkinson SJ; Dinauer MC
    J Immunol; 2004 Nov; 173(10):5971-9. PubMed ID: 15528331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency.
    Gu Y; Jia B; Yang FC; D'Souza M; Harris CE; Derrow CW; Zheng Y; Williams DA
    J Biol Chem; 2001 May; 276(19):15929-38. PubMed ID: 11278678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat.
    Fukuda S; Yasu T; Kobayashi N; Ikeda N; Schmid-Schönbein GW
    Circ Res; 2004 Jul; 95(1):100-8. PubMed ID: 15166092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow.
    Hu YL; Li S; Miao H; Tsou TC; del Pozo MA; Chien S
    J Vasc Res; 2002; 39(6):465-76. PubMed ID: 12566972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Rac activity alleviates lipopolysaccharide-induced acute pulmonary injury in mice.
    Yao HY; Chen L; Xu C; Wang J; Chen J; Xie QM; Wu X; Yan XF
    Biochim Biophys Acta; 2011 Jul; 1810(7):666-74. PubMed ID: 21511011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.