These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1556186)

  • 1. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat.
    De Nicola L; Blantz RC; Gabbai FB
    J Clin Invest; 1992 Apr; 89(4):1248-56. PubMed ID: 1556186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin.
    Steiner RW; Tucker BJ; Blantz RC
    J Clin Invest; 1979 Aug; 64(2):503-12. PubMed ID: 457865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive control of renal function by alpha 2-adrenergic system and nitric oxide: role of angiotensin II.
    Vallon V; Peterson OW; Gabbai FB; Blantz RC; Thomson SC
    J Cardiovasc Pharmacol; 1995 Dec; 26(6):916-22. PubMed ID: 8606528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II and renal functional reserve in rats with Goldblatt hypertension.
    De Nicola L; Keiser JA; Blantz RC; Gabbai FB
    Hypertension; 1992 Jun; 19(6 Pt 2):790-4. PubMed ID: 1592482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute renal excretory actions of losartan in spontaneously hypertensive rats: role of AT2 receptors, prostaglandins, kinins and nitric oxide.
    Munoz-Garcia R; Maeso R; Rodrigo E; Navarro J; Ruilope LM; Casal MC; Cachofeiro V; Lahera V
    J Hypertens; 1995 Dec; 13(12 Pt 2):1779-84. PubMed ID: 8903651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glomerular and tubular actions of angiotensin II.
    Blantz RC
    Am J Kidney Dis; 1987 Jul; 10(1 Suppl 1):2-6. PubMed ID: 2886045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of ochratoxin A-induced reduction of glomerular filtration rate in rats.
    Gekle M; Silbernagl S
    J Pharmacol Exp Ther; 1993 Oct; 267(1):316-21. PubMed ID: 8229758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The angiotensin receptor antagonist 2-ethoxy-1-[[2'-(1H- tetrazol-5-yl) biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV11974) attenuates the tubuloglomerular feedback response during NO synthase blockade in rats.
    Kawata T; Hashimoto S; Koike T
    J Pharmacol Exp Ther; 1996 May; 277(2):572-7. PubMed ID: 8627533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal functional reserve in the early stage of experimental diabetes.
    De Nicola L; Blantz RC; Gabbai FB
    Diabetes; 1992 Mar; 41(3):267-73. PubMed ID: 1551487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of inhibitory potency by nonpeptide angiotensin II receptor antagonists PD123177 and DuP 753 on proximal nephron and renal transport.
    Cogan MG; Liu FY; Wong PC; Timmermans PB
    J Pharmacol Exp Ther; 1991 Nov; 259(2):687-91. PubMed ID: 1941617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efferent limb of the tubuloglomerular feedback system.
    Blantz RC; Steiner RW; Tucker BJ
    Fed Proc; 1981 Jan; 40(1):104-8. PubMed ID: 7450060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat.
    Ploth DW; Rudulph J; LaGrange R; Navar LG
    J Clin Invest; 1979 Nov; 64(5):1325-35. PubMed ID: 227932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of angiotensin in the regulation of renal response to proteins.
    Gabbai FB; De Nicola L; Garcia GE; Blantz RC
    Semin Nephrol; 1995 Sep; 15(5):396-404. PubMed ID: 8525141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of endogenous endothelin and nitric oxide in tubuloglomerular feedback.
    Kawabata M; Han WH; Ise T; Kobayashi K; Takabatake T
    Kidney Int Suppl; 1996 Jun; 55():S135-7. PubMed ID: 8743535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prostaglandins and nitric oxide on the renal effects of angiotensin II in the anaesthetized rat.
    Clayton JS; Clark KL; Johns EJ; Drew GM
    Br J Pharmacol; 1998 Aug; 124(7):1467-74. PubMed ID: 9723960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide.
    Gabbai FB; Thomson SC; Peterson O; Wead L; Malvey K; Blantz RC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1004-8. PubMed ID: 7611442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal hemodynamic and excretory responses to PD 123319 and losartan, nonpeptide AT1 and AT2 subtype-specific angiotensin II ligands.
    Keiser JA; Bjork FA; Hodges JC; Taylor DG
    J Pharmacol Exp Ther; 1992 Sep; 262(3):1154-60. PubMed ID: 1527720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of renal vasoconstrictor effect of NG-nitro-L-arginine in rabbit by angiotensin II and alpha-1 adrenergic receptor blockade.
    Hajj-Ali AF; Reilly TM; Wong PC
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1152-7. PubMed ID: 7932165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of putative glomerular receptors for angiotensin II in the rainbow trout Oncorhynchus mykiss using the antagonists Losartan, PD 123177, and saralasin.
    Cobb CS; Brown JA
    Gen Comp Endocrinol; 1993 Oct; 92(1):123-31. PubMed ID: 8262354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine feeding modifies cyclosporine nephrotoxicity in rats.
    De Nicola L; Thomson SC; Wead LM; Brown MR; Gabbai FB
    J Clin Invest; 1993 Oct; 92(4):1859-65. PubMed ID: 8408638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.