BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15561908)

  • 1. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice.
    Minami K; Miki T; Kadowaki T; Seino S
    Diabetes; 2004 Dec; 53 Suppl 3():S176-80. PubMed ID: 15561908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of KATP channels as metabolic sensors in acute metabolic changes.
    Miki T; Seino S
    J Mol Cell Cardiol; 2005 Jun; 38(6):917-25. PubMed ID: 15910876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice.
    Seino S; Miki T
    J Physiol; 2004 Jan; 554(Pt 2):295-300. PubMed ID: 12826653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.
    Seino S; Iwanaga T; Nagashima K; Miki T
    Diabetes; 2000 Mar; 49(3):311-8. PubMed ID: 10868950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences.
    Flechtner I; de Lonlay P; Polak M
    Diabetes Metab; 2006 Dec; 32(6):569-80. PubMed ID: 17296510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].
    Nakaya H; Miki T; Seino S; Yamada K; Inagaki N; Suzuki M; Sato T; Yamada M; Matsushita K; Kurachi Y; Arita M
    Nihon Yakurigaku Zasshi; 2003 Sep; 122(3):243-50. PubMed ID: 12939542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review.
    Seino S
    J Diabetes Complications; 2003; 17(2 Suppl):2-5. PubMed ID: 12623161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells.
    Yokoshiki H; Sunagawa M; Seki T; Sperelakis N
    Am J Physiol; 1998 Jan; 274(1):C25-37. PubMed ID: 9458709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel.
    Szamosfalvi B; Cortes P; Alviani R; Asano K; Riser BL; Zasuwa G; Yee J
    Kidney Int; 2002 May; 61(5):1739-49. PubMed ID: 11967023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A view of sur/KIR6.X, KATP channels.
    Babenko AP; Aguilar-Bryan L; Bryan J
    Annu Rev Physiol; 1998; 60():667-87. PubMed ID: 9558481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular biology of adenosine triphosphate-sensitive potassium channels.
    Aguilar-Bryan L; Bryan J
    Endocr Rev; 1999 Apr; 20(2):101-35. PubMed ID: 10204114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2.
    Ravier MA; Nenquin M; Miki T; Seino S; Henquin JC
    Endocrinology; 2009 Jan; 150(1):33-45. PubMed ID: 18787024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of the inhibitory effects of clonidine on vascular adenosine triphosphate-sensitive potassium channels.
    Kawahito S; Kawano T; Kitahata H; Oto J; Takahashi A; Takaishi K; Harada N; Nakagawa T; Kinoshita H; Azma T; Nakaya Y; Oshita S
    Anesth Analg; 2011 Dec; 113(6):1374-80. PubMed ID: 22003223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state.
    Ogata H; Seino Y; Harada N; Iida A; Suzuki K; Izumoto T; Ishikawa K; Uenishi E; Ozaki N; Hayashi Y; Miki T; Inagaki N; Tsunekawa S; Hamada Y; Seino S; Oiso Y
    J Endocrinol; 2014 Aug; 222(2):191-200. PubMed ID: 24891433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies.
    Seino S
    Annu Rev Physiol; 1999; 61():337-62. PubMed ID: 10099692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ZD0947, a novel and potent ATP-sensitive K
    Mori K; Yamashita Y; Teramoto N
    Eur J Pharmacol; 2016 Nov; 791():773-779. PubMed ID: 27693800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling.
    Minami K; Morita M; Saraya A; Yano H; Terauchi Y; Miki T; Kuriyama T; Kadowaki T; Seino S
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1289-96. PubMed ID: 12933351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1.
    Miki T; Suzuki M; Shibasaki T; Uemura H; Sato T; Yamaguchi K; Koseki H; Iwanaga T; Nakaya H; Seino S
    Nat Med; 2002 May; 8(5):466-72. PubMed ID: 11984590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis.
    Miki T; Liss B; Minami K; Shiuchi T; Saraya A; Kashima Y; Horiuchi M; Ashcroft F; Minokoshi Y; Roeper J; Seino S
    Nat Neurosci; 2001 May; 4(5):507-12. PubMed ID: 11319559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
    Li CG; Cui WY; Wang H
    Acta Pharmacol Sin; 2016 Jan; 37(1):134-42. PubMed ID: 26725741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.