These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 15562183)

  • 1. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans.
    St Clair Gibson A; Noakes TD
    Br J Sports Med; 2004 Dec; 38(6):797-806. PubMed ID: 15562183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin?
    Grassi B; Rossiter HB; Zoladz JA
    Exerc Sport Sci Rev; 2015 Apr; 43(2):75-83. PubMed ID: 25688762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions.
    Noakes TD; St Clair Gibson A; Lambert EV
    Br J Sports Med; 2005 Feb; 39(2):120-4. PubMed ID: 15665213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance.
    Tucker R
    Br J Sports Med; 2009 Jun; 43(6):392-400. PubMed ID: 19224911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derecruitment of the lumbar musculature with fatiguing trunk extension exercise.
    Clark BC; Manini TM; Ploutz-Snyder LL
    Spine (Phila Pa 1976); 2003 Feb; 28(3):282-7. PubMed ID: 12567032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central vs. peripheral determinants of sympathetic neural recruitment: insights from static handgrip exercise and postexercise circulatory occlusion.
    Badrov MB; Olver TD; Shoemaker JK
    Am J Physiol Regul Integr Comp Physiol; 2016 Dec; 311(6):R1013-R1021. PubMed ID: 27784689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of motor output: can training change it?
    Bawa P
    Exerc Sport Sci Rev; 2002 Apr; 30(2):59-63. PubMed ID: 11991538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance.
    Hampson DB; St Clair Gibson A; Lambert MI; Noakes TD
    Sports Med; 2001; 31(13):935-52. PubMed ID: 11708402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing of motor unit synchronization model for localized muscle fatigue.
    Naik GR; Kumar DK; Yadav V; Wheeler K; Arjunan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():360-3. PubMed ID: 19963458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular fatigue after resistance training.
    Izquierdo M; Ibañez J; Calbet JA; González-Izal M; Navarro-Amézqueta I; Granados C; Malanda A; Idoate F; González-Badillo JJ; Häkkinen K; Kraemer WJ; Tirapu I; Gorostiaga EM
    Int J Sports Med; 2009 Aug; 30(8):614-23. PubMed ID: 19382055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise and its troubles.
    Windhorst UR
    Can J Neurol Sci; 2003 May; 30(2):87-8. PubMed ID: 12774946
    [No Abstract]   [Full Text] [Related]  

  • 13. Exercise-induced respiratory muscle fatigue: implications for performance.
    Romer LM; Polkey MI
    J Appl Physiol (1985); 2008 Mar; 104(3):879-88. PubMed ID: 18096752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fatiguing, submaximal high- versus low-torque isometric exercise on motor unit recruitment and firing behavior.
    Muddle TWD; Colquhoun RJ; Magrini MA; Luera MJ; DeFreitas JM; Jenkins NDM
    Physiol Rep; 2018 Apr; 6(8):e13675. PubMed ID: 29673119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viewpoint: Fatigue mechanisms determining exercise performance: integrative physiology is systems physiology.
    Ameredes BT
    J Appl Physiol (1985); 2008 May; 104(5):1545. PubMed ID: 18504823
    [No Abstract]   [Full Text] [Related]  

  • 16. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance.
    Noakes TD
    Appl Physiol Nutr Metab; 2011 Feb; 36(1):23-35. PubMed ID: 21326375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential beneficial effects of whole-body vibration for muscle recovery after exercise.
    Kosar AC; Candow DG; Putland JT
    J Strength Cond Res; 2012 Oct; 26(10):2907-11. PubMed ID: 22130390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a prior high-intensity knee-extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans.
    Layec G; Bringard A; Le Fur Y; Vilmen C; Micallef JP; Perrey S; Cozzone PJ; Bendahan D
    Exp Physiol; 2009 Jun; 94(6):704-19. PubMed ID: 19151077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ; Romer LM
    J Appl Physiol (1985); 2008 May; 104(5):1442-51. PubMed ID: 18323465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular endurance training and motor unit firing patterns during fatigue.
    Mettler JA; Griffin L
    Exp Brain Res; 2016 Jan; 234(1):267-76. PubMed ID: 26449966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.