These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15562482)

  • 1. New approaches to receiver operating characteristic methods in functional magnetic resonance imaging with real data using repeated trials.
    Nandy RR; Cordes D
    Magn Reson Med; 2004 Dec; 52(6):1424-31. PubMed ID: 15562482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel ROC-type method for testing the efficiency of multivariate statistical methods in fMRI.
    Nandy RR; Cordes D
    Magn Reson Med; 2003 Jun; 49(6):1152-62. PubMed ID: 12768594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel approach to STAP implementation for fMRI data.
    Thompson EA
    J Magn Reson Imaging; 2006 Feb; 23(2):216-21. PubMed ID: 16416435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROC methods for evaluation of fMRI techniques.
    Sorenson JA; Wang X
    Magn Reson Med; 1996 Nov; 36(5):737-44. PubMed ID: 8916024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing a signal model and identifying brain activity from fMRI data by a detrending-based fractal analysis.
    Hu J; Lee JM; Gao J; White KD; Crosson B
    Brain Struct Funct; 2008 Feb; 212(5):417-26. PubMed ID: 18193280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A family of locally constrained CCA models for detecting activation patterns in fMRI.
    Zhuang X; Yang Z; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2017 Apr; 149():63-84. PubMed ID: 28041980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [ROC analysis and one of its applications to fMRI data].
    Wu Z; Tang H; Tang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):19-22. PubMed ID: 17333884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ROC approach for evaluating functional brain MR imaging and postprocessing protocols.
    Constable RT; Skudlarski P; Gore JC
    Magn Reson Med; 1995 Jul; 34(1):57-64. PubMed ID: 7674899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plurality and resemblance in fMRI data analysis.
    Lange N; Strother SC; Anderson JR; Nielsen FA; Holmes AP; Kolenda T; Savoy R; Hansen LK
    Neuroimage; 1999 Sep; 10(3 Pt 1):282-303. PubMed ID: 10458943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reliable and time-saving semiautomatic spike-template-based analysis of interictal EEG-fMRI.
    Tousseyn S; Dupont P; Robben D; Goffin K; Sunaert S; Van Paesschen W
    Epilepsia; 2014 Dec; 55(12):2048-58. PubMed ID: 25377892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marker selection via maximizing the partial area under the ROC curve of linear risk scores.
    Wang Z; Chang YC
    Biostatistics; 2011 Apr; 12(2):369-85. PubMed ID: 20729218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How ignoring physiological noise can bias the conclusions from fMRI simulation results.
    Welvaert M; Rosseel Y
    J Neurosci Methods; 2012 Oct; 211(1):125-32. PubMed ID: 22960507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal-spatial mean-shift clustering analysis to improve functional MRI activation detection.
    Ai L; Xiong J
    Magn Reson Imaging; 2016 Nov; 34(9):1283-1291. PubMed ID: 27469315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian methods for FMRI time-series analysis using a nonstationary model for the noise.
    Oikonomou VP; Tripoliti EE; Fotiadis DI
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):664-74. PubMed ID: 20123577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process.
    Yao S; Zeng W; Wang N; Chen L
    Magn Reson Imaging; 2013 Jul; 31(6):970-5. PubMed ID: 23587929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DWT-CEM: an algorithm for scale-temporal clustering in fMRI.
    Sato JR; Fujita A; Amaro E; Miranda JM; Morettin PA; Brammer MJ
    Biol Cybern; 2007 Jul; 97(1):33-45. PubMed ID: 17534651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity.
    Ngan SC; Hu X
    Magn Reson Med; 1999 May; 41(5):939-46. PubMed ID: 10332877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.