These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15562485)

  • 1. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging.
    Samsonov AA; Kholmovski EG; Parker DL; Johnson CR
    Magn Reson Med; 2004 Dec; 52(6):1397-406. PubMed ID: 15562485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical method for characterizing the noise in nonlinearly reconstructed images from undersampled MR data: the POCS example.
    Sabati M; Peng H; Lauzon ML; Frayne R
    Magn Reson Imaging; 2013 Nov; 31(9):1587-98. PubMed ID: 23895872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast wavelet-based reconstruction method for magnetic resonance imaging.
    Guerquin-Kern M; Häberlin M; Pruessmann KP; Unser M
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1649-60. PubMed ID: 21478074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. POCS-enhanced correction of motion artifacts in parallel MRI.
    Samsonov AA; Velikina J; Jung Y; Kholmovski EG; Johnson CR; Block WF
    Magn Reson Med; 2010 Apr; 63(4):1104-10. PubMed ID: 20373413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint.
    Block KT; Uecker M; Frahm J
    Magn Reson Med; 2007 Jun; 57(6):1086-98. PubMed ID: 17534903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating.
    Liu Q; Wang S; Yang K; Luo J; Zhu Y; Liang D
    IEEE Trans Med Imaging; 2013 Jul; 32(7):1290-301. PubMed ID: 23559032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of undersampled non-Cartesian data sets using pseudo-Cartesian GRAPPA in conjunction with GROG.
    Seiberlich N; Breuer F; Heidemann R; Blaimer M; Griswold M; Jakob P
    Magn Reson Med; 2008 May; 59(5):1127-37. PubMed ID: 18429026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR image reconstruction of sparsely sampled 3D k-space data by projection-onto-convex sets.
    Peng H; Sabati M; Lauzon L; Frayne R
    Magn Reson Imaging; 2006 Jul; 24(6):761-73. PubMed ID: 16824971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative projection onto convex sets for quantitative susceptibility mapping.
    Deng W; Boada F; Poser BA; Schirda C; Stenger VA
    Magn Reson Med; 2015 Feb; 73(2):697-703. PubMed ID: 24604410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI.
    Shilling RZ; Robbie TQ; Bailloeul T; Mewes K; Mersereau RM; Brummer ME
    IEEE Trans Med Imaging; 2009 May; 28(5):633-44. PubMed ID: 19272995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): constrained image reconstruction using k-space locality in radiofrequency coil encoded data.
    Yeh EN; McKenzie CA; Ohliger MA; Sodickson DK
    Magn Reson Med; 2005 Jun; 53(6):1383-92. PubMed ID: 15906283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fat/water separation in k-space with real-valued estimates and its combination with POCS.
    Berglund J; Rydén H; Avventi E; Norbeck O; Sprenger T; Skare S
    Magn Reson Med; 2020 Feb; 83(2):653-661. PubMed ID: 31418932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI.
    Sumpf TJ; Uecker M; Boretius S; Frahm J
    J Magn Reson Imaging; 2011 Aug; 34(2):420-8. PubMed ID: 21780234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
    Lustig M; Pauly JM
    Magn Reson Med; 2010 Aug; 64(2):457-71. PubMed ID: 20665790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. k-space inherited parallel acquisition (KIPA): application on dynamic magnetic resonance imaging thermometry.
    Guo JY; Kholmovski EG; Zhang L; Jeong EK; Parker DL
    Magn Reson Imaging; 2006 Sep; 24(7):903-15. PubMed ID: 16916708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved algorithm for rotational motion artifact suppression in MRI.
    Weerasinghe C; Yan H
    IEEE Trans Med Imaging; 1998 Apr; 17(2):310-7. PubMed ID: 9688164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projection reconstruction MR imaging using FOCUSS.
    Ye JC; Tak S; Han Y; Park HW
    Magn Reson Med; 2007 Apr; 57(4):764-75. PubMed ID: 17390360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite MR image reconstruction and unaliasing for general trajectories using neural networks.
    Sinha N; Ramakrishnan AG; Saranathan M
    Magn Reson Imaging; 2010 Dec; 28(10):1468-84. PubMed ID: 20850243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts.
    Chu ML; Chang HC; Chung HW; Truong TK; Bashir MR; Chen NK
    Magn Reson Med; 2015 Nov; 74(5):1336-48. PubMed ID: 25394325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computationally efficient method for reconstructing sequences of MR images from undersampled k-space data.
    Zonoobi D; Kassim AA
    Med Image Anal; 2014 Aug; 18(6):857-65. PubMed ID: 24874773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.