These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15562519)

  • 21. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis.
    Torbeev VY; Kent SB
    Org Biomol Chem; 2012 Aug; 10(30):5887-91. PubMed ID: 22659831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active site binding modes of curcumin in HIV-1 protease and integrase.
    Vajragupta O; Boonchoong P; Morris GM; Olson AJ
    Bioorg Med Chem Lett; 2005 Jul; 15(14):3364-8. PubMed ID: 15950462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations.
    Yu YX; Wang W; Sun HB; Zhang LL; Wu SL; Liu WT
    SAR QSAR Environ Res; 2021 Aug; 32(8):615-641. PubMed ID: 34157882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL; Lin JH; McCammon JA
    Biopolymers; 2006 Jun; 82(3):272-84. PubMed ID: 16508951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvation shell structure of cyclooctylpyranone in water solvent and its comparative structure, dynamics and dipole moment in HIV protease.
    Arul Murugan N; Chandra Jha P; Agren H
    Phys Chem Chem Phys; 2009 Aug; 11(30):6482-9. PubMed ID: 19809680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase.
    Yao L; Sklenak S; Yan H; Cukier RI
    J Phys Chem B; 2005 Apr; 109(15):7500-10. PubMed ID: 16851861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of aspartic acid in collagen structure and stability: A molecular dynamics investigation.
    Raman SS; Parthasarathi R; Subramanian V; Ramasami T
    J Phys Chem B; 2006 Oct; 110(41):20678-85. PubMed ID: 17034259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization.
    Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J
    Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site.
    Sadiq SK; Wan S; Coveney PV
    Biochemistry; 2007 Dec; 46(51):14865-77. PubMed ID: 18052195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional roles of a structural element involving Na+-pi interactions in the catalytic site of T1 lipase revealed by molecular dynamics simulations.
    Hagiwara Y; Matsumura H; Tateno M
    J Am Chem Soc; 2009 Nov; 131(46):16697-705. PubMed ID: 19886661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Illustration of HIV-1 protease folding through a molten-globule-like intermediate using an experimental model that implicates alpha-crystallin and calcium ions.
    Dash C; Sastry M; Rao M
    Biochemistry; 2005 Mar; 44(10):3725-34. PubMed ID: 15751949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding HIV protease: can it be translated into effective therapy against AIDS?
    Tang J; Lin Y; Co E; Hartsuck JA; Lin X
    Scand J Clin Lab Invest Suppl; 1992; 210():127-35. PubMed ID: 1455175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease.
    Trylska J; Bała P; Geller M; Grochowski P
    Biophys J; 2002 Aug; 83(2):794-807. PubMed ID: 12124265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of solute-solvent proton exchange on polypeptide chain dynamics: a constant-pH molecular dynamics study.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2005 Jul; 109(28):13777-84. PubMed ID: 16852726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.