BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15563003)

  • 21. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria.
    Numata M; Nakamura N; Koshikawa H; Terashima Y
    Environ Sci Technol; 2002 Oct; 36(20):4389-94. PubMed ID: 12387413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation.
    Wang J; Cutright TJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(8):1569-84. PubMed ID: 15991724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.
    Aulenta F; Bianchi A; Majone M; Petrangeli Papini M; Potalivo M; Tandoi V
    Environ Int; 2005 Feb; 31(2):185-90. PubMed ID: 15661281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acceleration of perchloroethylene dechlorination by extracellular secretions from Microbacterium in a mixed culture containing Desulfitobacterium.
    Wan J; Chen C; Chen J; Miao Q; Liu Y; Ye J; Chen K; Jin Y; Tang X; Shen C
    Environ Pollut; 2019 Feb; 245():651-657. PubMed ID: 30481679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base.
    Sherwood Lollar B; Slater GF; Sleep B; Witt M; Klecka GM; Harkness M; Spivack J
    Environ Sci Technol; 2001 Jan; 35(2):261-9. PubMed ID: 11347596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.
    Sekar R; Taillefert M; DiChristina TJ
    Appl Environ Microbiol; 2016 Nov; 82(21):6335-6343. PubMed ID: 27542932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.
    Kuder T; van Breukelen BM; Vanderford M; Philp P
    Environ Sci Technol; 2013 Sep; 47(17):9668-77. PubMed ID: 23895211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of isotopic enrichment factors for the biodegradation of chlorinated ethenes using a parameter estimation model: toward an improved quantification of biodegradation.
    Morrill PL; Sleep BE; Slater GF; Edwards EA; Lollar BS
    Environ Sci Technol; 2006 Jun; 40(12):3886-92. PubMed ID: 16830557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater.
    Chambon JC; Bjerg PL; Scheutz C; Baelum J; Jakobsen R; Binning PJ
    Biotechnol Bioeng; 2013 Jan; 110(1):1-23. PubMed ID: 22926627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.
    Wang J; Farrell J
    Environ Sci Technol; 2003 Sep; 37(17):3891-6. PubMed ID: 12967110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa.
    Olaniran AO; Pillay D; Pillay B
    Chemosphere; 2008 Aug; 73(1):24-9. PubMed ID: 18635246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater.
    Hoelen TP; Reinhard M
    Biodegradation; 2004 Dec; 15(6):395-403. PubMed ID: 15562997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes.
    Luijten ML; Roelofsen W; Langenhoff AA; Schraa G; Stams AJ
    Environ Microbiol; 2004 Jun; 6(6):646-50. PubMed ID: 15142253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth.
    Holliger C; Schraa G; Stams AJ; Zehnder AJ
    Appl Environ Microbiol; 1993 Sep; 59(9):2991-7. PubMed ID: 8215370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.
    Paul L; Smolders E
    Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced reductive de-chlorination of a solvent contaminated aquifer through addition and apparent fermentation of cyclodextrin.
    Blanford WJ; Pecoraro MP; Heinrichs R; Boving TB
    J Contam Hydrol; 2018 Jan; 208():68-78. PubMed ID: 29289350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
    Borden RC
    J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite.
    Lee W; Batchelor B
    Environ Sci Technol; 2002 Dec; 36(23):5147-54. PubMed ID: 12523432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.