BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15563019)

  • 1. Molecular pathogenesis of tuber formation in tuberous sclerosis complex.
    Crino PB
    J Child Neurol; 2004 Sep; 19(9):716-25. PubMed ID: 15563019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase.
    Roux PP; Ballif BA; Anjum R; Gygi SP; Blenis J
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13489-94. PubMed ID: 15342917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuberous sclerosis as an underlying basis for infantile spasm.
    Yeung RS
    Int Rev Neurobiol; 2002; 49():315-32. PubMed ID: 12040899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse models of tuberous sclerosis complex.
    Scheidenhelm DK; Gutmann DH
    J Child Neurol; 2004 Sep; 19(9):726-33. PubMed ID: 15563020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling.
    Tee AR; Fingar DC; Manning BD; Kwiatkowski DJ; Cantley LC; Blenis J
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13571-6. PubMed ID: 12271141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of tuberous sclerosis complex (TSC) function by 14-3-3 proteins.
    Nellist M; Goedbloed MA; Halley DJ
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):587-91. PubMed ID: 12773161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway.
    Onda H; Crino PB; Zhang H; Murphey RD; Rastelli L; Gould Rothberg BE; Kwiatkowski DJ
    Mol Cell Neurosci; 2002 Dec; 21(4):561-74. PubMed ID: 12504590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic basis of tuberous sclerosis complex: from bench to bedside.
    Au KS; Williams AT; Gambello MJ; Northrup H
    J Child Neurol; 2004 Sep; 19(9):699-709. PubMed ID: 15563017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuberous sclerosis-related gene expression in normal and dysplastic brain.
    Vinters HV; Kerfoot C; Catania M; Emelin JK; Roper SN; DeClue JE
    Epilepsy Res; 1998 Sep; 32(1-2):12-23. PubMed ID: 9761305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling.
    Manning BD; Cantley LC
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):573-8. PubMed ID: 12773158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mTOR signaling pathway in the pathogenesis of subependymal giant cell astrocytoma - A study of 28 cases.
    Kumari K; Sharma MC; Kakkar A; Malgulwar PB; Pathak P; Suri V; Sarkar C; Chandra SP; Faruq M; Gupta RK; Saran RK
    Neurol India; 2016; 64(5):988-94. PubMed ID: 27625244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma.
    El-Hashemite N; Zhang H; Henske EP; Kwiatkowski DJ
    Lancet; 2003 Apr; 361(9366):1348-9. PubMed ID: 12711473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for separable functions of tuberous sclerosis gene products in mammalian cell cycle regulation.
    Miloloza A; Kubista M; Rosner M; Hengstschläger M
    J Neuropathol Exp Neurol; 2002 Feb; 61(2):154-63. PubMed ID: 11853018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis.
    Jóźwiak S; Kwiatkowski D; Kotulska K; Larysz-Brysz M; Lewin-Kowalik J; Grajkowska W; Roszkowski M
    J Child Neurol; 2004 Feb; 19(2):102-6. PubMed ID: 15072102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuberin phosphorylation regulates its interaction with hamartin. Two proteins involved in tuberous sclerosis.
    Aicher LD; Campbell JS; Yeung RS
    J Biol Chem; 2001 Jun; 276(24):21017-21. PubMed ID: 11290735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuberous sclerosis: from tubers to mTOR.
    Kwiatkowski DJ
    Ann Hum Genet; 2003 Jan; 67(Pt 1):87-96. PubMed ID: 12556239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin.
    Hodges AK; Li S; Maynard J; Parry L; Braverman R; Cheadle JP; DeClue JE; Sampson JR
    Hum Mol Genet; 2001 Dec; 10(25):2899-905. PubMed ID: 11741833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumour suppressors hamartin and tuberin: intracellular signalling.
    Krymskaya VP
    Cell Signal; 2003 Aug; 15(8):729-39. PubMed ID: 12781866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.