BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 15563167)

  • 1. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Torpedo californica acetylcholinesterase catalytic gorge with two novel bis-functional galanthamine derivatives.
    Bartolucci C; Haller LA; Jordis U; Fels G; Lamba D
    J Med Chem; 2010 Jan; 53(2):745-51. PubMed ID: 20025280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
    Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL
    J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor.
    Colletier JP; Sanson B; Nachon F; Gabellieri E; Fattorusso C; Campiani G; Weik M
    J Am Chem Soc; 2006 Apr; 128(14):4526-7. PubMed ID: 16594661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica.
    Koellner G; Kryger G; Millard CB; Silman I; Sussman JL; Steiner T
    J Mol Biol; 2000 Feb; 296(2):713-35. PubMed ID: 10669619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase.
    Haviv H; Wong DM; Greenblatt HM; Carlier PR; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2005 Aug; 127(31):11029-36. PubMed ID: 16076210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking.
    Pilger C; Bartolucci C; Lamba D; Tropsha A; Fels G
    J Mol Graph Model; 2001; 19(3-4):288-96, 374-8. PubMed ID: 11449566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs.
    Bartolucci C; Perola E; Pilger C; Fels G; Lamba D
    Proteins; 2001 Feb; 42(2):182-91. PubMed ID: 11119642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level.
    Millard CB; Kryger G; Ordentlich A; Greenblatt HM; Harel M; Raves ML; Segall Y; Barak D; Shafferman A; Silman I; Sussman JL
    Biochemistry; 1999 Jun; 38(22):7032-9. PubMed ID: 10353814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic mechanism of E2020 binding to acetylcholinesterase: a steered molecular dynamics simulation.
    Niu C; Xu Y; Xu Y; Luo X; Duan W; Silman I; Sussman JL; Zhu W; Chen K; Shen J; Jiang H
    J Phys Chem B; 2005 Dec; 109(49):23730-8. PubMed ID: 16375354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad.
    Paz A; Xie Q; Greenblatt HM; Fu W; Tang Y; Silman I; Qiu Z; Sussman JL
    J Med Chem; 2009 Apr; 52(8):2543-9. PubMed ID: 19326912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants of Torpedo californica acetylcholinesterase inhibition by the novel and orally active carbamate based anti-alzheimer drug ganstigmine (CHF-2819).
    Bartolucci C; Siotto M; Ghidini E; Amari G; Bolzoni PT; Racchi M; Villetti G; Delcanale M; Lamba D
    J Med Chem; 2006 Aug; 49(17):5051-8. PubMed ID: 16913695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase.
    Paz A; Roth E; Ashani Y; Xu Y; Shnyrov VL; Sussman JL; Silman I; Weiner L
    Protein Sci; 2012 Aug; 21(8):1138-52. PubMed ID: 22674800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Back door" opening implied by the crystal structure of a carbamoylated acetylcholinesterase.
    Bartolucci C; Perola E; Cellai L; Brufani M; Lamba D
    Biochemistry; 1999 May; 38(18):5714-9. PubMed ID: 10231521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica.
    Kryger G; Silman I; Sussman JL
    J Physiol Paris; 1998; 92(3-4):191-4. PubMed ID: 9789806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution.
    Greenblatt HM; Kryger G; Lewis T; Silman I; Sussman JL
    FEBS Lett; 1999 Dec; 463(3):321-6. PubMed ID: 10606746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.
    Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Ali MA
    Bioorg Med Chem; 2013 Jun; 21(11):3022-31. PubMed ID: 23602518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specific interaction of the photosensitizer methylene blue with acetylcholinesterase provides a model system for studying the molecular consequences of photodynamic therapy.
    Silman I; Roth E; Paz A; Triquigneaux MM; Ehrenshaft M; Xu Y; Shnyrov VL; Sussman JL; Deterding LJ; Ashani Y; Mason RP; Weiner L
    Chem Biol Interact; 2013 Mar; 203(1):63-6. PubMed ID: 23159732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.