These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 15563171)

  • 1. Size-dependent exciton chirality in (R)-(+)-1,1'-bi-2-naphthol dimethyl ether nanoparticles.
    Xiao D; Yang W; Yao J; Xi L; Yang X; Shuai Z
    J Am Chem Soc; 2004 Dec; 126(47):15439-44. PubMed ID: 15563171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control over the chirality of (R)-1,1'-bi-2-naphthol dibenzoate in nanoparticles.
    Zhang Y; Yang W; Tian Z; Yao J
    Talanta; 2005 Sep; 67(3):520-4. PubMed ID: 18970199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles.
    Xiao D; Xi L; Yang W; Fu H; Shuai Z; Fang Y; Yao J
    J Am Chem Soc; 2003 Jun; 125(22):6740-5. PubMed ID: 12769584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of the porphyrin-porphyrin exciton interaction in circular dichroism spectra of dimeric tetraarylporphyrins.
    Pescitelli G; Gabriel S; Wang Y; Fleischhauer J; Woody RW; Berova N
    J Am Chem Soc; 2003 Jun; 125(25):7613-28. PubMed ID: 12812504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of absolute configuration of naphthylphenyl-substituted oligosilanes by CD exciton chirality method.
    Oh HS; Imae I; Kawakami Y
    Chirality; 2003 Mar; 15(3):231-7. PubMed ID: 12582989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Time resolved photoluminescence of ZnO nanoparticles under low photon energy excitation].
    Wang XF; Xie PB; Zhao FL; Wang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1160-3. PubMed ID: 19650443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent spectroscopic properties of conjugated polymer nanoparticles.
    Grey JK; Kim DY; Norris BC; Miller WL; Barbara PF
    J Phys Chem B; 2006 Dec; 110(51):25568-72. PubMed ID: 17181186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field-induced changes in absorption and emission spectra of CdS nanoparticles doped in a polymer film.
    Ohara Y; Nakabayashi T; Iwasaki K; Torimoto T; Ohtani B; Hiratani T; Konishi K; Ohta N
    J Phys Chem B; 2006 Oct; 110(42):20927-36. PubMed ID: 17048910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared.
    Gautier C; Bürgi T
    J Am Chem Soc; 2006 Aug; 128(34):11079-87. PubMed ID: 16925425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD inversion and fluorescence enhancement in organic nanoparticles of (R)-di-2-naphthylprolinol.
    Xi L; Fu H; Yang W; Yao J
    Chem Commun (Camb); 2005 Jan; (4):492-4. PubMed ID: 15654380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of the chiroptical properties of molecules with isotopically engendered chirality.
    Dierksen M; Grimme S
    J Chem Phys; 2006 May; 124(17):174301. PubMed ID: 16689565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism and absorption spectroscopy of merocyanine dimer aggregates: molecular properties and exciton transfer dynamics from time-dependent quantum calculations.
    Seibt J; Lohr A; Würthner F; Engel V
    Phys Chem Chem Phys; 2007 Dec; 9(47):6214-8. PubMed ID: 18046470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals.
    Li L; Liu J; Su Y; Li G; Chen X; Qiu X; Yan T
    Nanotechnology; 2009 Apr; 20(15):155706. PubMed ID: 19420558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules.
    Koole R; Liljeroth P; de Mello Donega C; Vanmaekelbergh D; Meijerink A
    J Am Chem Soc; 2006 Aug; 128(32):10436-41. PubMed ID: 16895408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality inversion in the bilirubin molecular exciton.
    Boiadjiev SE; Lightner DA
    Chirality; 2001 May; 13(5):251-7. PubMed ID: 11317346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, circular dichroism, and absolute stereochemistry of a Fecht acid analog and related compounds.
    Murai S; Soutome T; Yoshida N; Osawa S; Harada N
    Enantiomer; 2000; 5(2):197-202. PubMed ID: 10857059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiroptical properties of cation complexes of chiral phenazino-18-crown-6 ether-type hosts.
    Szarvas S; Szalay L; Vass E; Hollósi M; Samu E; Huszthy P
    Chirality; 2005 Jun; 17(6):345-51. PubMed ID: 15858830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel circular dichroism spectroscopic approach for detection of ligand binding of proteins: avidin as example.
    Zsila F
    Anal Biochem; 2009 Aug; 391(2):154-6. PubMed ID: 19450538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute configuration of chiral [2.2]paracyclophanes with intramolecular charge-transfer interaction. Failure of the exciton chirality method and use of the sector rule applied to the cotton effect of the CT transition.
    Furo T; Mori T; Wada T; Inoue Y
    J Am Chem Soc; 2005 Jun; 127(23):8242-3. PubMed ID: 15941231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.