These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15563461)

  • 41. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization.
    Blount MA; Zoraghi R; Ke H; Bessay EP; Corbin JD; Francis SH
    Mol Pharmacol; 2006 Nov; 70(5):1822-31. PubMed ID: 16926278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei.
    Shalaby T; Liniger M; Seebeck T
    Eur J Biochem; 2001 Dec; 268(23):6197-206. PubMed ID: 11733015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei.
    Zoraghi R; Seebeck T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4343-8. PubMed ID: 11930001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in purine specificity in tandem GAF chimeras from cyanobacterial cyaB1 adenylate cyclase and rat phosphodiesterase 2.
    Linder JU; Bruder S; Schultz A; Schultz JE
    FEBS J; 2007 Mar; 274(6):1514-23. PubMed ID: 17302738
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct allosteric regulation between the GAF domain and catalytic domain of photoreceptor phosphodiesterase PDE6.
    Zhang XJ; Cahill KB; Elfenbein A; Arshavsky VY; Cote RH
    J Biol Chem; 2008 Oct; 283(44):29699-705. PubMed ID: 18779324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase.
    Herberg FW; Taylor SS; Dostmann WR
    Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions.
    Kapphahn MA; Shabb JB
    Arch Biochem Biophys; 1997 Dec; 348(2):347-56. PubMed ID: 9434747
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling and mutational analysis of the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5.
    Sopory S; Balaji S; Srinivasan N; Visweswariah SS
    FEBS Lett; 2003 Mar; 539(1-3):161-6. PubMed ID: 12650945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydropathic analysis and mutagenesis of the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). cGMP versus cAMP substrate selectivity.
    Turko IV; Francis SH; Corbin JD
    Biochemistry; 1998 Mar; 37(12):4200-5. PubMed ID: 9521742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. cAMP signalling in Trypanosoma brucei.
    Seebeck T; Gong K; Kunz S; Schaub R; Shalaby T; Zoraghi R
    Int J Parasitol; 2001 May; 31(5-6):491-8. PubMed ID: 11334934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.
    Lorenz R; Moon EW; Kim JJ; Schmidt SH; Sankaran B; Pavlidis IV; Kim C; Herberg FW
    Biochem J; 2017 Jul; 474(14):2389-2403. PubMed ID: 28583991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in dictyostelium.
    Bosgraaf L; Russcher H; Snippe H; Bader S; Wind J; Van Haastert PJ
    Mol Biol Cell; 2002 Nov; 13(11):3878-89. PubMed ID: 12429832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3).
    He R; Komas N; Ekholm D; Murata T; Taira M; Hockman S; Degerman E; Manganiello VC
    Cell Biochem Biophys; 1998; 29(1-2):89-111. PubMed ID: 9631240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sodium regulation of GAF domain function.
    Cann MJ
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1032-4. PubMed ID: 17956270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cyclic nucleotide phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system.
    Maurice DH
    Front Biosci; 2005 May; 10():1221-8. PubMed ID: 15769620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A subset of GAF domains are evolutionarily conserved sodium sensors.
    Cann M
    Mol Microbiol; 2007 Apr; 64(2):461-72. PubMed ID: 17493128
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond.
    Weeks JL; Corbin JD; Francis SH
    J Pharmacol Exp Ther; 2009 Oct; 331(1):133-41. PubMed ID: 19641165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural insight into substrate specificity of phosphodiesterase 10.
    Wang H; Liu Y; Hou J; Zheng M; Robinson H; Ke H
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5782-7. PubMed ID: 17389385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.