These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15563611)

  • 21. Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system.
    Williams C; van der Klei IJ
    Biochem Biophys Res Commun; 2013 Aug; 438(2):395-401. PubMed ID: 23899522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pexophagy in Pichia pastoris.
    Oku M; Sakai Y
    Methods Enzymol; 2008; 451():217-28. PubMed ID: 19185723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris.
    Guan J; Stromhaug PE; George MD; Habibzadegah-Tari P; Bevan A; Dunn WA; Klionsky DJ
    Mol Biol Cell; 2001 Dec; 12(12):3821-38. PubMed ID: 11739783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pexophagy: the selective autophagy of peroxisomes.
    Dunn WA; Cregg JM; Kiel JA; van der Klei IJ; Oku M; Sakai Y; Sibirny AA; Stasyk OV; Veenhuis M
    Autophagy; 2005 Jul; 1(2):75-83. PubMed ID: 16874024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in
    Boutouja F; Stiehm CM; Reidick C; Mastalski T; Brinkmeier R; Magraoui FE; Platta HW
    Cells; 2019 Jun; 8(7):. PubMed ID: 31262095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Molecular mechanisms of autophagic peroxisome degradation in yeasts].
    Nazarko TIu; Sybirnyĭ AA
    Ukr Biokhim Zh (1999); 2005; 77(2):16-25. PubMed ID: 16335232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Hansenula polymorpha PDD7 gene is essential for macropexophagy and microautophagy.
    Komduur JA; Veenhuis M; Kiel JA
    FEMS Yeast Res; 2003 Mar; 3(1):27-34. PubMed ID: 12702243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.
    Nazarko TY; Polupanov AS; Manjithaya RR; Subramani S; Sibirny AA
    Mol Biol Cell; 2007 Jan; 18(1):106-18. PubMed ID: 17079731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective degradation of peroxisomes in yeasts.
    Bellu AR; Kiel JA
    Microsc Res Tech; 2003 Jun; 61(2):161-70. PubMed ID: 12740822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30.
    Burnett SF; Farré JC; Nazarko TY; Subramani S
    J Biol Chem; 2015 Mar; 290(13):8623-31. PubMed ID: 25694426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha.
    Bellu AR; Salomons FA; Kiel JA; Veenhuis M; Van Der Klei IJ
    J Biol Chem; 2002 Nov; 277(45):42875-80. PubMed ID: 12221086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy.
    Nazarko TY; Ozeki K; Till A; Ramakrishnan G; Lotfi P; Yan M; Subramani S
    J Cell Biol; 2014 Feb; 204(4):541-57. PubMed ID: 24535825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy.
    Mukaiyama H; Oku M; Baba M; Samizo T; Hammond AT; Glick BS; Kato N; Sakai Y
    Genes Cells; 2002 Jan; 7(1):75-90. PubMed ID: 11856375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of autophagy and pexophagy in yeasts.
    Sibirny AA
    Biochemistry (Mosc); 2011 Dec; 76(12):1279-90. PubMed ID: 22150273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assays to Monitor Pexophagy in Yeast.
    Wang W; Subramani S
    Methods Enzymol; 2017; 588():413-427. PubMed ID: 28237113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure.
    Mukaiyama H; Baba M; Osumi M; Aoyagi S; Kato N; Ohsumi Y; Sakai Y
    Mol Biol Cell; 2004 Jan; 15(1):58-70. PubMed ID: 13679515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Pexophagy and regulation of membrane dynamics by Atg proteins].
    Yamashita S; Sakai Y
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(10 Suppl):1474-9. PubMed ID: 16922422
    [No Abstract]   [Full Text] [Related]  

  • 38. Intracellular ATP correlates with mode of pexophagy in Pichia pastoris.
    Ano Y; Hattori T; Kato N; Sakai Y
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1527-33. PubMed ID: 16116281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component.
    Cowles CR; Snyder WB; Burd CG; Emr SD
    EMBO J; 1997 May; 16(10):2769-82. PubMed ID: 9184222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p.
    Kiel JA; Rechinger KB; van der Klei IJ; Salomons FA; Titorenko VI; Veenhuis M
    Yeast; 1999 Jun; 15(9):741-54. PubMed ID: 10398343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.