BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15563754)

  • 1. Targeting beta-cell cyclic 3'5' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review.
    Furman B; Pyne N; Flatt P; O'Harte F
    J Pharm Pharmacol; 2004 Dec; 56(12):1477-92. PubMed ID: 15563754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cyclic nucleotides and cyclic nucleotide phosphodiesterases in pancreatic islet beta-cells and intestinal L-cells as targets for treating diabetes mellitus.
    Furman B; Pyne N
    Curr Opin Investig Drugs; 2006 Oct; 7(10):898-905. PubMed ID: 17086934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide.
    Green BD; Gault VA; O'Harte FP; Flatt PR
    Diabetes Obes Metab; 2005 Sep; 7(5):595-604. PubMed ID: 16050953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The islet enhancer vildagliptin: mechanisms of improved glucose metabolism.
    Ahrén B; Foley JE
    Int J Clin Pract Suppl; 2008 Mar; (159):8-14. PubMed ID: 18269436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice.
    Kim SJ; Nian C; Doudet DJ; McIntosh CH
    Diabetes; 2008 May; 57(5):1331-9. PubMed ID: 18299314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B.
    Walz HA; Härndahl L; Wierup N; Zmuda-Trzebiatowska E; Svennelid F; Manganiello VC; Ploug T; Sundler F; Degerman E; Ahrén B; Holst LS
    J Endocrinol; 2006 Jun; 189(3):629-41. PubMed ID: 16731793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationale for dipeptidyl peptidase 4 inhibitors: a new class of oral agents for the treatment of type 2 diabetes mellitus.
    Campbell RK
    Ann Pharmacother; 2007 Jan; 41(1):51-60. PubMed ID: 17190843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapies for the treatment of type 2 diabetes mellitus based on incretin action.
    Gallwitz B
    Minerva Endocrinol; 2006 Jun; 31(2):133-47. PubMed ID: 16682937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly approved and promising antidiabetic agents.
    Combettes M; Kargar C
    Therapie; 2007; 62(4):293-310. PubMed ID: 17983555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipeptidyl peptidase IV inhibitors and the incretin system in type 2 diabetes mellitus.
    Langley AK; Suffoletta TJ; Jennings HR
    Pharmacotherapy; 2007 Aug; 27(8):1163-80. PubMed ID: 17655515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence.
    van Genugten RE; van Raalte DH; Diamant M
    Diabetes Obes Metab; 2012 Feb; 14(2):101-11. PubMed ID: 21752172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incretins and other peptides in the treatment of diabetes.
    Todd JF; Bloom SR
    Diabet Med; 2007 Mar; 24(3):223-32. PubMed ID: 17263764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incretin and islet hormonal responses to fat and protein ingestion in healthy men.
    Carr RD; Larsen MO; Winzell MS; Jelic K; Lindgren O; Deacon CF; Ahrén B
    Am J Physiol Endocrinol Metab; 2008 Oct; 295(4):E779-84. PubMed ID: 18612044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP signaling in pancreatic islets.
    Furman B; Ong WK; Pyne NJ
    Adv Exp Med Biol; 2010; 654():281-304. PubMed ID: 20217503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glucagon secretion.
    Young A
    Adv Pharmacol; 2005; 52():151-71. PubMed ID: 16492545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and beta-cell function in obese diabetic ob/ob mice.
    Moritoh Y; Takeuchi K; Asakawa T; Kataoka O; Odaka H
    Eur J Pharmacol; 2008 Jul; 588(2-3):325-32. PubMed ID: 18499100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes.
    Mu J; Woods J; Zhou YP; Roy RS; Li Z; Zycband E; Feng Y; Zhu L; Li C; Howard AD; Moller DE; Thornberry NA; Zhang BB
    Diabetes; 2006 Jun; 55(6):1695-704. PubMed ID: 16731832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.
    Wiedeman PE; Trevillyan JM
    Curr Opin Investig Drugs; 2003 Apr; 4(4):412-20. PubMed ID: 12808880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide.
    Ahrén B; Winzell MS; Wierup N; Sundler F; Burkey B; Hughes TE
    Regul Pept; 2007 Oct; 143(1-3):97-103. PubMed ID: 17482289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue.
    Uçkaya G; Delagrange P; Chavanieu A; Grassy G; Berthault MF; Ktorza A; Cerasi E; Leibowitz G; Kaiser N
    J Endocrinol; 2005 Mar; 184(3):505-13. PubMed ID: 15749809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.