These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15564284)

  • 21. Hypoxia and alkalinization inhibit endothelium-derived nitric oxide but not endothelium-derived hyperpolarizing factor responses in porcine coronary artery.
    Shimizu S; Paul RJ
    J Pharmacol Exp Ther; 1999 Oct; 291(1):335-44. PubMed ID: 10490922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxic vasorelaxation: Ca2+-dependent and Ca2+-independent mechanisms.
    Thorne GD; Ishida Y; Paul RJ
    Cell Calcium; 2004; 36(3-4):201-8. PubMed ID: 15261476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery.
    Choi SK; Ahn DS; Lee YH
    Cardiovasc Res; 2009 May; 82(2):324-32. PubMed ID: 19218288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contractile properties of the cultured vascular smooth muscle cells: the crucial role played by RhoA in the regulation of contractility.
    Bi D; Nishimura J; Niiro N; Hirano K; Kanaide H
    Circ Res; 2005 Apr; 96(8):890-7. PubMed ID: 15774857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia-induced vascular smooth muscle relaxation: increased ATP-sensitive K+ efflux or decreased voltage-sensitive Ca2+ influx?
    Gauthier KM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H24-5. PubMed ID: 16565315
    [No Abstract]   [Full Text] [Related]  

  • 26. Alteration of the [Ca(2+)](i)-force relationship during the vasorelaxation induced by a Ca(2+) channel blocker SR33805 in the porcine coronary artery.
    Ieiri S; Hirano K; Nishimura J; Suita S; Kanaide H
    Br J Pharmacol; 2000 Dec; 131(8):1597-606. PubMed ID: 11139437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction.
    Sakurada S; Takuwa N; Sugimoto N; Wang Y; Seto M; Sasaki Y; Takuwa Y
    Circ Res; 2003 Sep; 93(6):548-56. PubMed ID: 12919947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longer muscle lengths recapitulate force suppression in swine carotid artery.
    Rembold CM; Meeks MK; Ripley ML; Han S
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1065-70. PubMed ID: 17056671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracranial-extracranial differences in the Ca2+ sensitivity of rabbit arteries.
    Akopov SE; Zhang L; Pearce WJ
    Proc Soc Exp Biol Med; 1997 Jan; 214(1):76-82. PubMed ID: 9012364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vascular oxygen sensing: detection of novel candidates by proteomics and organ culture.
    Thorne GD; Hilliard GM; Paul RJ
    J Appl Physiol (1985); 2004 Feb; 96(2):802-8; discussion 792. PubMed ID: 14715690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dependence of ATP consumption on cross-bridge phosphorylation in swine carotid smooth muscle.
    Wingard CJ; Paul RJ; Murphy RA
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):111-7. PubMed ID: 7853233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium sensitization induced by sodium fluoride in permeabilized rat mesenteric arteries.
    Yang E; Cho JY; Sohn UD; Kim IK
    Korean J Physiol Pharmacol; 2010 Feb; 14(1):51-7. PubMed ID: 20221280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane permeabilization induced by discodermin A, a novel marine bioactive peptide.
    Sato K; Horibe K; Amano K; Mitusi-Saito M; Hori M; Matsunaga S; Fusetani N; Ozaki H; Karaki H
    Toxicon; 2001; 39(2-3):259-64. PubMed ID: 10978743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Stress-Induced Activation of AMPK and Inhibition of Constitutive Phosphoproteins Controlling Smooth Muscle Contraction: Evidence for Smooth Muscle Fatigue?
    Smith CA; Miner AS; Barbee RW; Ratz PH
    Front Physiol; 2017; 8():681. PubMed ID: 28943852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries.
    Hedegaard ER; Nielsen BD; Kun A; Hughes AD; Krøigaard C; Mogensen S; Matchkov VV; Fröbert O; Simonsen U
    Br J Pharmacol; 2014 Jan; 171(1):69-82. PubMed ID: 24111896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptative modifications of right coronary myocytes voltage-gated K+ currents in rat with hypoxic pulmonary hypertension.
    Hyvelin JM; Gautier M; Lemaire MC; Bonnet P; Eder V
    Pflugers Arch; 2009 Feb; 457(4):721-30. PubMed ID: 18633640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-independent hypoxic vasorelaxation in porcine coronary artery.
    Gu M; Thorne GD; Wardle RL; Ishida Y; Paul RJ
    J Physiol; 2005 Feb; 562(Pt 3):839-46. PubMed ID: 15564284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+-desensitizing hypoxic vasorelaxation: pivotal role for the myosin binding subunit of myosin phosphatase (MYPT1) in porcine coronary artery.
    Wardle RL; Gu M; Ishida Y; Paul RJ
    J Physiol; 2006 Apr; 572(Pt 1):259-67. PubMed ID: 16439434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rho kinase is an effector underlying Ca2+-desensitizing hypoxic relaxation in porcine coronary artery.
    Wardle RL; Gu M; Ishida Y; Paul RJ
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H23-9. PubMed ID: 17416603
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.