These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 15564520)

  • 41. Control of free calcium in plant cell nuclei.
    Pauly N; Knight MR; Thuleau P; van der Luit AH; Moreau M; Trewavas AJ; Ranjeva R; Mazars C
    Nature; 2000 Jun; 405(6788):754-5. PubMed ID: 10866186
    [No Abstract]   [Full Text] [Related]  

  • 42. Inter-Organelle NAD Metabolism Underpinning Light Responsive NADP Dynamics in Plants.
    Hashida SN; Kawai-Yamada M
    Front Plant Sci; 2019; 10():960. PubMed ID: 31404160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants.
    Tai L; Li BB; Nie XM; Zhang PP; Hu CH; Zhang L; Liu WT; Li WQ; Chen KM
    Front Plant Sci; 2019; 10():681. PubMed ID: 31275331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development.
    Li BB; Wang X; Tai L; Ma TT; Shalmani A; Liu WT; Li WQ; Chen KM
    Front Plant Sci; 2018; 9():379. PubMed ID: 29662499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CML20, an
    Wu X; Qiao Z; Liu H; Acharya BR; Li C; Zhang W
    Front Plant Sci; 2017; 8():824. PubMed ID: 28603528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in
    Liao J; Deng J; Qin Z; Tang J; Shu M; Ding C; Liu J; Hu C; Yuan M; Huang Y; Yang R; Zhou Y
    Front Plant Sci; 2017; 8():482. PubMed ID: 28424729
    [No Abstract]   [Full Text] [Related]  

  • 47. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death.
    Djabou ASM; Carvalho LJCB; Li QX; Niemenak N; Chen S
    Acta Physiol Plant; 2017; 39(4):91. PubMed ID: 28316353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Divergent Soybean Calmodulins Respond Similarly to Calcium Transients: Insight into Differential Target Regulation.
    Walton SD; Chakravarthy H; Shettigar V; O'Neil AJ; Siddiqui JK; Jones BR; Tikunova SB; Davis JP
    Front Plant Sci; 2017; 8():208. PubMed ID: 28261258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation.
    Wang YJ; Wei XY; Jing XQ; Chang YL; Hu CH; Wang X; Chen KM
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240354
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses.
    Zeng H; Xu L; Singh A; Wang H; Du L; Poovaiah BW
    Front Plant Sci; 2015; 6():600. PubMed ID: 26322054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Profiling of genes related to cross protection and competition for NbTOM1 by HLSV and TMV.
    Wen Y; Lim GX; Wong SM
    PLoS One; 2013; 8(9):e73725. PubMed ID: 24023899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells.
    Kurusu T; Hamada J; Nokajima H; Kitagawa Y; Kiyoduka M; Takahashi A; Hanamata S; Ohno R; Hayashi T; Okada K; Koga J; Hirochika H; Yamane H; Kuchitsu K
    Plant Physiol; 2010 Jun; 153(2):678-92. PubMed ID: 20357140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of NAD biosynthesis in plant development and stress responses.
    Hashida SN; Takahashi H; Uchimiya H
    Ann Bot; 2009 Apr; 103(6):819-24. PubMed ID: 19201765
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins.
    Boonburapong B; Buaboocha T
    BMC Plant Biol; 2007 Jan; 7():4. PubMed ID: 17263873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three types of tobacco calmodulins characteristically activate plant NAD kinase at different Ca2+ concentrations and pHs.
    Karita E; Yamakawa H; Mitsuhara I; Kuchitsu K; Ohashi Y
    Plant Cell Physiol; 2004 Oct; 45(10):1371-9. PubMed ID: 15564520
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco.
    Takabatake R; Karita E; Seo S; Mitsuhara I; Kuchitsu K; Ohashi Y
    Plant Cell Physiol; 2007 Mar; 48(3):414-23. PubMed ID: 17251204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines.
    Meini A; Garcia JB; Pessina GP; Aldinucci C; Frosini M; Palmi M
    Eur J Neurosci; 2006 Apr; 23(7):1690-700. PubMed ID: 16623825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ca2+-independent activity of nitric oxide synthase.
    Lee SJ; Beckingham K; Stull JT
    Biochem Biophys Res Commun; 2001 Jun; 284(2):526-30. PubMed ID: 11394913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calcium/calmodulin signaling controls osteoblast growth and differentiation.
    Zayzafoon M
    J Cell Biochem; 2006 Jan; 97(1):56-70. PubMed ID: 16229015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NAD+ kinase--a review.
    McGuinness ET; Butler JR
    Int J Biochem; 1985; 17(1):1-11. PubMed ID: 2987053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.