BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15565162)

  • 1. Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers.
    Eliyahu H; Makovitzki A; Azzam T; Zlotkin A; Joseph A; Gazit D; Barenholz Y; Domb AJ
    Gene Ther; 2005 Mar; 12(6):494-503. PubMed ID: 15565162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and in vivo performance of dextran-spermine polyplexes and DOTAP/cholesterol lipoplexes administered locally and systemically.
    Eliyahu H; Joseph A; Schillemans JP; Azzam T; Domb AJ; Barenholz Y
    Biomaterials; 2007 May; 28(14):2339-49. PubMed ID: 17298842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between chemical composition, physical properties and transfection efficiency of polysaccharide-spermine conjugates.
    Eliyahu H; Siani S; Azzam T; Domb AJ; Barenholz Y
    Biomaterials; 2006 Mar; 27(8):1646-55. PubMed ID: 16242185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection.
    Azzam T; Eliyahu H; Makovitzki A; Linial M; Domb AJ
    J Control Release; 2004 Apr; 96(2):309-23. PubMed ID: 15081221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextran-spermine-based polyplexes--evaluation of transgene expression and of local and systemic toxicity in mice.
    Eliyahu H; Joseph A; Azzam T; Barenholz Y; Domb AJ
    Biomaterials; 2006 Mar; 27(8):1636-45. PubMed ID: 16221492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection.
    Hosseinkhani H; Azzam T; Tabata Y; Domb AJ
    Gene Ther; 2004 Jan; 11(2):194-203. PubMed ID: 14712304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice.
    Palumbo RN; Zhong X; Panus D; Han W; Ji W; Wang C
    J Control Release; 2012 Apr; 159(2):232-9. PubMed ID: 22300619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes.
    Jain S; Kumar S; Agrawal AK; Thanki K; Banerjee UC
    Mol Pharm; 2013 Jun; 10(6):2416-25. PubMed ID: 23597269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional disulfide-based cationic dextran conjugates for intravenous gene delivery targeting ovarian cancer cells.
    Song Y; Lou B; Zhao P; Lin C
    Mol Pharm; 2014 Jul; 11(7):2250-61. PubMed ID: 24892216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α₅β₁ integrin bearing DLD-1 colorectal cancer cells.
    Adil MM; Erdman ZS; Kokkoli E
    Langmuir; 2014 Apr; 30(13):3802-10. PubMed ID: 24635537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles.
    Mishra S; Webster P; Davis ME
    Eur J Cell Biol; 2004 Apr; 83(3):97-111. PubMed ID: 15202568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine.
    Cho SK; Dang C; Wang X; Ragan R; Kwon YJ
    Biomater Sci; 2015 Jul; 3(7):1124-33. PubMed ID: 26221945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene delivery through cell culture substrate adsorbed DNA complexes.
    Bengali Z; Pannier AK; Segura T; Anderson BC; Jang JH; Mustoe TA; Shea LD
    Biotechnol Bioeng; 2005 May; 90(3):290-302. PubMed ID: 15800863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs.
    Bragonzi A; Boletta A; Biffi A; Muggia A; Sersale G; Cheng SH; Bordignon C; Assael BM; Conese M
    Gene Ther; 1999 Dec; 6(12):1995-2004. PubMed ID: 10637451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridinium cationic lipids in gene delivery: an in vitro and in vivo comparison of transfection efficiency versus a tetraalkylammonium congener.
    Ilies MA; Johnson BH; Makori F; Miller A; Seitz WA; Thompson EB; Balaban AT
    Arch Biochem Biophys; 2005 Mar; 435(1):217-26. PubMed ID: 15680924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced gene expression in mouse lung by prolonging the retention time of intravenously injected plasmid DNA.
    Song YK; Liu F; Liu D
    Gene Ther; 1998 Nov; 5(11):1531-7. PubMed ID: 9930306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine.
    Shim MS; Kwon YJ
    J Control Release; 2009 Feb; 133(3):206-13. PubMed ID: 18992289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(propylacrylic acid)-mediated serum stabilization of cationic lipoplexes.
    Cheung CY; Stayton PS; Hoffman AS
    J Biomater Sci Polym Ed; 2005; 16(2):163-79. PubMed ID: 15794483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroporation-enhanced gene delivery in mammary tumors.
    Wells JM; Li LH; Sen A; Jahreis GP; Hui SW
    Gene Ther; 2000 Apr; 7(7):541-7. PubMed ID: 10819568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes.
    Almulathanon AAY; Ranucci E; Ferruti P; Garnett MC; Bosquillon C
    Pharm Res; 2018 Mar; 35(4):86. PubMed ID: 29516282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.