BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 15565169)

  • 21. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a ribonuclease P protein Ph1601p from Pyrococcus horikoshii OT3: an archaeal homologue of human nuclear ribonuclease P protein Rpp21.
    Kakuta Y; Ishimatsu I; Numata T; Kimura K; Yao M; Tanaka I; Kimura M
    Biochemistry; 2005 Sep; 44(36):12086-93. PubMed ID: 16142906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain.
    Till S; Lejeune E; Thermann R; Bortfeld M; Hothorn M; Enderle D; Heinrich C; Hentze MW; Ladurner AG
    Nat Struct Mol Biol; 2007 Oct; 14(10):897-903. PubMed ID: 17891150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Components and assembly of RNA-induced silencing complex].
    Song XM; Yan F; Du LX
    Yi Chuan; 2006 Jun; 28(6):761-6. PubMed ID: 16818443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism.
    Nogly P; Gushchin I; Remeeva A; Esteves AM; Borges N; Ma P; Ishchenko A; Grudinin S; Round E; Moraes I; Borshchevskiy V; Santos H; Gordeliy V; Archer M
    Nat Commun; 2014 Jun; 5():4169. PubMed ID: 24942835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural perspective of the protein-RNA interactions involved in virus-induced RNA silencing and its suppression.
    Yang J; Yuan YA
    Biochim Biophys Acta; 2009; 1789(9-10):642-52. PubMed ID: 19501679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA recognition and cleavage by a splicing endonuclease.
    Xue S; Calvin K; Li H
    Science; 2006 May; 312(5775):906-10. PubMed ID: 16690865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex.
    Törö I; Thore S; Mayer C; Basquin J; Séraphin B; Suck D
    EMBO J; 2001 May; 20(9):2293-303. PubMed ID: 11331594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural framework for the mechanism of archaeal exosomes in RNA processing.
    Büttner K; Wenig K; Hopfner KP
    Mol Cell; 2005 Nov; 20(3):461-71. PubMed ID: 16285927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypothetical protein AF2241 from Archaeoglobus fulgidus adopts a cyclophilin-like fold.
    Ai X; Li L; Semesi A; Yee A; Arrowsmith CH; Li SS; Choy WY
    J Biomol NMR; 2007 Aug; 38(4):353-8. PubMed ID: 17610131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei.
    Shi H; Tschudi C; Ullu E
    RNA; 2006 Dec; 12(12):2063-72. PubMed ID: 17053086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle.
    Pakhomova ON; Deep S; Huang Q; Zwieb C; Hinck AP
    J Mol Biol; 2002 Mar; 317(1):145-58. PubMed ID: 11916385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases.
    Matsumoto S; Shimada A; Kohda D
    BMC Struct Biol; 2013 Jul; 13():11. PubMed ID: 23815857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular biology. Argonaute journeys into the heart of RISC.
    Sontheimer EJ; Carthew RW
    Science; 2004 Sep; 305(5689):1409-10. PubMed ID: 15353786
    [No Abstract]   [Full Text] [Related]  

  • 35. Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes.
    LaRonde-LeBlanc N; Guszczynski T; Copeland T; Wlodawer A
    FEBS J; 2005 Jun; 272(11):2800-10. PubMed ID: 15943813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex.
    Matsumoto S; Taguchi Y; Shimada A; Igura M; Kohda D
    Biochemistry; 2017 Jan; 56(4):602-611. PubMed ID: 27997792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems.
    Zhu X; Ye K
    FEBS Lett; 2012 Mar; 586(6):939-45. PubMed ID: 22449983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The macro domain is an ADP-ribose binding module.
    Karras GI; Kustatscher G; Buhecha HR; Allen MD; Pugieux C; Sait F; Bycroft M; Ladurner AG
    EMBO J; 2005 Jun; 24(11):1911-20. PubMed ID: 15902274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
    Nowotny M; Gaidamakov SA; Crouch RJ; Yang W
    Cell; 2005 Jul; 121(7):1005-16. PubMed ID: 15989951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure.
    Okabe M; Tomita K; Ishitani R; Ishii R; Takeuchi N; Arisaka F; Nureki O; Yokoyama S
    EMBO J; 2003 Nov; 22(21):5918-27. PubMed ID: 14592988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.