BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15565254)

  • 1. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya.
    Deng H; O'Hagan D; Schaffrath C
    Nat Prod Rep; 2004 Dec; 21(6):773-84. PubMed ID: 15565254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.
    Chan KK; O'Hagan D
    Methods Enzymol; 2012; 516():219-35. PubMed ID: 23034231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase.
    Deng H; Cross SM; McGlinchey RP; Hamilton JT; O'Hagan D
    Chem Biol; 2008 Dec; 15(12):1268-76. PubMed ID: 19101471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A.
    Huang F; Haydock SF; Spiteller D; Mironenko T; Li TL; O'Hagan D; Leadlay PF; Spencer JB
    Chem Biol; 2006 May; 13(5):475-84. PubMed ID: 16720268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering fluorometabolite production: fluorinase expression in Salinispora tropica Yields Fluorosalinosporamide.
    Eustáquio AS; O'Hagan D; Moore BS
    J Nat Prod; 2010 Mar; 73(3):378-82. PubMed ID: 20085308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya.
    Murphy CD; Schaffrath C; O'Hagan D
    Chemosphere; 2003 Jul; 52(2):455-61. PubMed ID: 12738270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorinase: a tool for the synthesis of ¹⁸F-labeled sugars and nucleosides for PET.
    Onega M; Winkler M; O'Hagan D
    Future Med Chem; 2009 Aug; 1(5):865-73. PubMed ID: 21426085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic fluorination and biotechnological developments of the fluorinase.
    O'Hagan D; Deng H
    Chem Rev; 2015 Jan; 115(2):634-49. PubMed ID: 25253234
    [No Abstract]   [Full Text] [Related]  

  • 10. Insights into fluorometabolite biosynthesis in Streptomyces cattleya DSM46488 through genome sequence and knockout mutants.
    Zhao C; Li P; Deng Z; Ou HY; McGlinchey RP; O'Hagan D
    Bioorg Chem; 2012 Oct; 44():1-7. PubMed ID: 22858315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinase mediated chemoenzymatic synthesis of [(18)F]-fluoroacetate.
    Li XG; Domarkas J; O'Hagan D
    Chem Commun (Camb); 2010 Nov; 46(41):7819-21. PubMed ID: 20852791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme.
    Carvalho MF; Oliveira RS
    Crit Rev Biotechnol; 2017 Nov; 37(7):880-897. PubMed ID: 28049355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites.
    Barbe V; Bouzon M; Mangenot S; Badet B; Poulain J; Segurens B; Vallenet D; Marlière P; Weissenbach J
    J Bacteriol; 2011 Sep; 193(18):5055-6. PubMed ID: 21868806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis.
    Walker MC; Wen M; Weeks AM; Chang MC
    ACS Chem Biol; 2012 Sep; 7(9):1576-85. PubMed ID: 22769062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fluorinase, the chlorinase and the duf-62 enzymes.
    Deng H; O'Hagan D
    Curr Opin Chem Biol; 2008 Oct; 12(5):582-92. PubMed ID: 18675376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assay for the enantiomeric analysis of [2H1]-fluoroacetic acid: insight into the stereochemical course of fluorination during fluorometabolite biosynthesis in streptomyces cattleya.
    O'Hagan D; Goss RJ; Meddour A; Courtieu J
    J Am Chem Soc; 2003 Jan; 125(2):379-87. PubMed ID: 12517149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of ketoreductase (rubN6) and aminotransferase (rubN4) genes in the gene cluster of Streptomyces achromogenes var. rubradiris.
    Lamichhane J; Liou K; Lee HC; Kim CG; Sohng JK
    Biotechnol Lett; 2006 Apr; 28(8):545-53. PubMed ID: 16614891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.
    Cobb SL; Deng H; McEwan AR; Naismith JH; O'Hagan D; Robinson DA
    Org Biomol Chem; 2006 Apr; 4(8):1458-60. PubMed ID: 16604208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.