These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Alcohol-conferred hemolysis in yeast is a consequence of increased respiratory burden. Shuster A; Osherov N; Leikin-Frenkel A; Rosenberg M FEMS Yeast Res; 2007 Sep; 7(6):879-86. PubMed ID: 17559411 [TBL] [Abstract][Full Text] [Related]
3. Microbial alcohol-conferred hemolysis is a late response to alcohol stress. Shuster A; Korem M; Jacob-Hirsch J; Amariglio N; Rechavi G; Rosenberg M FEMS Yeast Res; 2011 Jun; 11(4):315-23. PubMed ID: 21276200 [TBL] [Abstract][Full Text] [Related]
4. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism. Bakri MM; Rich AM; Cannon RD; Holmes AR Mol Oral Microbiol; 2015 Feb; 30(1):27-38. PubMed ID: 24975985 [TBL] [Abstract][Full Text] [Related]
5. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Cheraiti N; Sauvage FX; Salmon JM Appl Microbiol Biotechnol; 2008 Jan; 77(5):1093-109. PubMed ID: 17938904 [TBL] [Abstract][Full Text] [Related]
6. Role of yeasts in the salivary acetaldehyde production from ethanol among risk groups for ethanol-associated oral cavity cancer. Tillonen J; Homann N; Rautio M; Jousimies-Somer H; Salaspuro M Alcohol Clin Exp Res; 1999 Aug; 23(8):1409-15. PubMed ID: 10470985 [TBL] [Abstract][Full Text] [Related]
7. Candida albicans--a pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer. Rozpędowska E; Galafassi S; Johansson L; Hagman A; Piškur J; Compagno C FEMS Yeast Res; 2011 May; 11(3):285-91. PubMed ID: 21205163 [TBL] [Abstract][Full Text] [Related]
8. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts. Vriesekoop F; Haass C; Pamment NB FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102 [TBL] [Abstract][Full Text] [Related]
9. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428 [TBL] [Abstract][Full Text] [Related]
10. Effect of alcohol on bacterial hemolysis. Shirron N; Korem M; Shuster A; Leikin-Frenkel A; Rosenberg M Curr Microbiol; 2008 Oct; 57(4):318-25. PubMed ID: 18661181 [TBL] [Abstract][Full Text] [Related]
11. Production of haemolytic factor by clinical isolates of Candida tropicalis. Favero D; França EJ; Furlaneto-Maia L; Quesada RM; Furlaneto MC Mycoses; 2011 Nov; 54(6):e816-20. PubMed ID: 21672047 [TBL] [Abstract][Full Text] [Related]
12. [Hydrophobic properties of Candida sp. comparing the two methods]. Ciok-Pater E; Gospodarek E; Prazyńska M Med Dosw Mikrobiol; 2008; 60(3):243-51. PubMed ID: 19143178 [TBL] [Abstract][Full Text] [Related]
13. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
14. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Piekarska K; Mol E; van den Berg M; Hardy G; van den Burg J; van Roermund C; MacCallum D; Odds F; Distel B Eukaryot Cell; 2006 Nov; 5(11):1847-56. PubMed ID: 16963628 [TBL] [Abstract][Full Text] [Related]
15. Alcohol increases hemolysis by staphylococci. Korem M; Gov Y; Shirron N; Shuster A; Rosenberg M FEMS Microbiol Lett; 2007 Apr; 269(1):153-9. PubMed ID: 17227454 [TBL] [Abstract][Full Text] [Related]
16. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104 [TBL] [Abstract][Full Text] [Related]
17. Water-soluble amphotericin B-polyvinylpyrrolidone complexes with maintained antifungal activity against Candida spp. and Aspergillus spp. and reduced haemolytic and cytotoxic effects. Charvalos E; Tzatzarakis MN; Van Bambeke F; Tulkens PM; Tsatsakis AM; Tzanakakis GN; Mingeot-Leclercq MP J Antimicrob Chemother; 2006 Feb; 57(2):236-44. PubMed ID: 16361329 [TBL] [Abstract][Full Text] [Related]
18. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of Chromogenic Candida Agar for isolation and presumptive identification of pathogenic yeast species. Ghelardi E; Pichierri G; Castagna B; Barnini S; Tavanti A; Campa M Clin Microbiol Infect; 2008 Feb; 14(2):141-7. PubMed ID: 17986267 [TBL] [Abstract][Full Text] [Related]
20. Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae. Pérez-Nevado F; Albergaria H; Hogg T; Girio F Int J Food Microbiol; 2006 May; 108(3):336-45. PubMed ID: 16564103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]