These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15565692)

  • 21. Coating of powder-blasted channels for high-performance microchip electrophoresis.
    Belder D; Kohler F; Ludwig M; Tolba K; Piehl N
    Electrophoresis; 2006 Aug; 27(16):3277-83. PubMed ID: 16858723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable hydrodynamic chromatography of microparticles localized in short microchannels.
    Jellema LJ; Markesteijn AP; Westerweel J; Verpoorte E
    Anal Chem; 2010 May; 82(10):4027-35. PubMed ID: 20423105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A triple-injection method for microchip electrophoresis.
    Tabuchi M; Baba Y
    Electrophoresis; 2005 Jan; 26(2):376-82. PubMed ID: 15657885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfabricated system for parallel single-cell capillary electrophoresis.
    Munce NR; Li J; Herman PR; Lilge L
    Anal Chem; 2004 Sep; 76(17):4983-9. PubMed ID: 15373432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulations of the second-order electrokinetic bias observed with the gated injection mode in chips.
    Blas M; Delaunay N; Ferrigno R; Rocca JL
    Electrophoresis; 2007 Aug; 28(17):2961-70. PubMed ID: 17661314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and variable-volume sample loading in sieving electrophoresis microchips using negative pressure combined with electrokinetic force.
    Qi LY; Yin XF; Zhang L; Wang M
    Lab Chip; 2008 Jul; 8(7):1137-44. PubMed ID: 18584090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A low-leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted cross-channel intersection.
    Chang CL; Hou HH; Fu LM; Tsai CH
    Electrophoresis; 2008 Aug; 29(15):3135-44. PubMed ID: 18600833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersion control in microfluidic chips by localized zeta potential variation using the field effect.
    Lee GB; Fu LM; Lin CH; Lee CY; Yang RJ
    Electrophoresis; 2004 Jun; 25(12):1879-87. PubMed ID: 15213988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and efficient isotachophoretic preconcentration in free solution coupled with gel electrophoresis separation on a microchip using a negative pressure sampling technique.
    Qi LY; Yin XF; Liu JH
    J Chromatogr A; 2009 May; 1216(20):4510-6. PubMed ID: 19328490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pressure injection on a valved microdevice for electrophoretic analysis of submicroliter samples.
    Karlinsey JM; Monahan J; Marchiarullo DJ; Ferrance JP; Landers JP
    Anal Chem; 2005 Jun; 77(11):3637-43. PubMed ID: 15924399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Faster and improved microchip electrophoresis using a capillary bundle.
    Sun Y; Kwok YC; Nguyen NT
    Electrophoresis; 2007 Dec; 28(24):4765-8. PubMed ID: 18072216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microchip separations of protein biotoxins using an integrated hand-held device.
    Fruetel JA; Renzi RF; Vandernoot VA; Stamps J; Horn BA; West JA; Ferko S; Crocker R; Bailey CG; Arnold D; Wiedenman B; Choi WY; Yee D; Shokair I; Hasselbrink E; Paul P; Rakestraw D; Padgen D
    Electrophoresis; 2005 Mar; 26(6):1144-54. PubMed ID: 15704246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of photomask resolution on separation efficiency on microfabricated devices.
    Meyer AR; Clark AM; Culbertson CT
    Lab Chip; 2006 Oct; 6(10):1355-61. PubMed ID: 17102849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.
    Cong Y; Katipamula S; Geng T; Prost SA; Tang K; Kelly RT
    Electrophoresis; 2016 Feb; 37(3):455-62. PubMed ID: 26255610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.