BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 15565697)

  • 1. Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems.
    Dahl JB; Lin JM; Muller SJ; Kumar S
    Annu Rev Chem Biomol Eng; 2015; 6():293-317. PubMed ID: 26134738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells.
    Lubbeck JL; Dean KM; Ma H; Palmer AE; Jimenez R
    Anal Chem; 2012 May; 84(9):3929-37. PubMed ID: 22424298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells.
    Amor R; Mahajan S; Amos WB; McConnell G
    Sci Rep; 2014 Dec; 4():7359. PubMed ID: 25483987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Razor-printed sticker microdevices for cell-based applications.
    Stallcop LE; Álvarez-García YR; Reyes-Ramos AM; Ramos-Cruz KP; Morgan MM; Shi Y; Li L; Beebe DJ; Domenech M; Warrick JW
    Lab Chip; 2018 Jan; 18(3):451-462. PubMed ID: 29318250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.
    Chen Y; Li D; Li Y; Wan J; Li J; Chen H
    Sci Rep; 2017 Nov; 7(1):15253. PubMed ID: 29127352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Autofluorescence Finder on the Sony ID7000
    Wanner N; Barnhart J; Apostolakis N; Zlojutro V; Asosingh K
    Front Bioeng Biotechnol; 2022; 10():827987. PubMed ID: 35372303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic systems for single DNA dynamics.
    Mai DJ; Brockman C; Schroeder CM
    Soft Matter; 2012 Jan; 8(41):10560-10572. PubMed ID: 23139700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells.
    Lin M; Liu Q; Liu C; Qiao X; Shao C; Su X
    Biomed Opt Express; 2018 Apr; 9(4):1692-1703. PubMed ID: 29675311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lasing with cell-endogenous fluorophores: parameters and conditions.
    Yong D; Ding D
    Sci Rep; 2017 Oct; 7(1):13569. PubMed ID: 29051508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis.
    Croce AC; Bottiroli G
    Eur J Histochem; 2014 Dec; 58(4):2461. PubMed ID: 25578980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone.
    Ozhikandathil J; Packirisamy M
    Biomicrofluidics; 2012; 6(4):46501. PubMed ID: 24106526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing in a microelectrofluidic system using optical whispering-gallery mode spectroscopy.
    Huang L; Guo Z
    Biomicrofluidics; 2011 Sep; 5(3):34114-3411414. PubMed ID: 22662041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel imaging microfluidic cytometer.
    Ehrlich DJ; McKenna BK; Evans JG; Belkina AC; Denis GV; Sherr DH; Cheung MC
    Methods Cell Biol; 2011; 102():49-75. PubMed ID: 21704835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence characterisation of isolated whole crypts and primary cultured human epithelial cells from normal, hyperplastic, and adenomatous colonic mucosa.
    DaCosta RS; Andersson H; Cirocco M; Marcon NE; Wilson BC
    J Clin Pathol; 2005 Jul; 58(7):766-74. PubMed ID: 15976349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology.
    Hellmich W; Pelargus C; Leffhalm K; Ros A; Anselmetti D
    Electrophoresis; 2005 Oct; 26(19):3689-96. PubMed ID: 16152668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.