BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15565701)

  • 41. Single potential electrophoresis microchip with reduced bias using pressure pulse injection.
    Lacharme F; Gijs MA
    Electrophoresis; 2006 Jul; 27(14):2924-32. PubMed ID: 16639704
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection.
    Dossi N; Toniolo R; Susmel S; Pizzariello A; Bontempelli G
    Electrophoresis; 2010 Aug; 31(15):2541-7. PubMed ID: 20603828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution electrophoretic separation and integrated-waveguide excitation of fluorescent DNA molecules in a lab on a chip.
    Dongre C; van Weerd J; Besselink GA; van Weeghel R; Vazquez RM; Osellame R; Cerullo G; Cretich M; Chiari M; Hoekstra HJ; Pollnau M
    Electrophoresis; 2010 Aug; 31(15):2584-8. PubMed ID: 20665917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophoretic chip for fractionation of selective DNA fragment.
    Sun K; Suzuki N; Li Z; Araki R; Ueno K; Juodkazis S; Abe M; Noji S; Misawa H
    Electrophoresis; 2008 Oct; 29(19):3959-63. PubMed ID: 18958868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-column concentration and separation of double-stranded DNA by gradient capillary electrophoresis.
    Kuo IT; Chiu TC; Chang HT
    Electrophoresis; 2003 Oct; 24(19-20):3339-47. PubMed ID: 14595680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA separations.
    Chow AW
    Methods Mol Biol; 2006; 339():129-44. PubMed ID: 16790871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    Electrophoresis; 2008 Feb; 29(3):561-6. PubMed ID: 18186531
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.
    Luo Y; Zhang Q; Qin J; Lin B
    Electrophoresis; 2007 Dec; 28(24):4769-71. PubMed ID: 18072217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel.
    Daghighi Y; Li D
    Electrophoresis; 2010 Mar; 31(5):868-78. PubMed ID: 20191548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique.
    Zhang L; Yin XF
    J Chromatogr A; 2006 Dec; 1137(2):243-8. PubMed ID: 17055523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of electrokinetic supercharging for high-sensitivity detection of DNA fragments in chip gel electrophoresis.
    Xu Z; Nishine T; Arai A; Hirokawa T
    Electrophoresis; 2004 Nov; 25(21-22):3875-81. PubMed ID: 15565672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection.
    Kim JH; Kang CJ; Kim YS
    Biosens Bioelectron; 2005 May; 20(11):2314-7. PubMed ID: 15797332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isotachophoresis preconcentration integrated microfluidic chip for highly sensitive genotyping of the hepatitis B virus.
    Liu D; Shi M; Huang H; Long Z; Zhou X; Qin J; Lin B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):32-8. PubMed ID: 16899416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.
    Attiya S; Jemere AB; Tang T; Fitzpatrick G; Seiler K; Chiem N; Harrison DJ
    Electrophoresis; 2001 Jan; 22(2):318-27. PubMed ID: 11288900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of the electrokinetic supercharging preconcentration for high-sensitivity microchip gel electrophoresis on a cross-geometry microchip.
    Xu Z; Hirokawa T
    Electrophoresis; 2004 Jul; 25(14):2357-62. PubMed ID: 15274018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Separation of DNA fragments for fast diagnosis by microchip electrophoresis using programmed field strength gradient.
    Kang SH; Park M; Cho K
    Electrophoresis; 2005 Aug; 26(16):3179-84. PubMed ID: 16041706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.