These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15565706)

  • 1. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.
    Johnson ME; Landers JP
    Electrophoresis; 2004 Nov; 25(21-22):3513-27. PubMed ID: 15565706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared laser-induced fluorescence detection in capillary electrophoresis.
    McWhorter S; Soper SA
    Electrophoresis; 2000 Apr; 21(7):1267-80. PubMed ID: 10826670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions.
    Giordano BC; Jin L; Couch AJ; Ferrance JP; Landers JP
    Anal Chem; 2004 Aug; 76(16):4705-14. PubMed ID: 15307780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.
    Fredrick SJ; Gross EM
    Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal spectrometry for detection in miniaturized systems: relevant features, strategies and recent applications.
    Ghaleb KA; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2793-801. PubMed ID: 15350914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and determination of β-casomorphins by using glass microfluidic chip electrophoresis together with laser-induced fluorescence detection.
    Wang Z; Wang W; Wang W; Xu L; Chen G; Fu F
    J Sep Sci; 2011 Jan; 34(2):196-201. PubMed ID: 21246725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems.
    Cesaro-Tadic S; Dernick G; Juncker D; Buurman G; Kropshofer H; Michel B; Fattinger C; Delamarche E
    Lab Chip; 2004 Dec; 4(6):563-9. PubMed ID: 15570366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-cost, low-power consumption, miniature laser-induced fluorescence system for DNA detection on a microfluidic device.
    Shrinivasan S; Norris PM; Landers JP; Ferrance JP
    Clin Lab Med; 2007 Mar; 27(1):173-81. PubMed ID: 17416310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual fluorescence/contactless conductivity detection for microfluidic chip.
    Liu C; Mo YY; Chen ZG; Li X; Li OL; Zhou X
    Anal Chim Acta; 2008 Jul; 621(2):171-7. PubMed ID: 18573381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting sensitive laser-induced fluorescence detection on electrophoretic microchips for executing rapid clinical diagnostics.
    Ferrance J; Landers JP
    Luminescence; 2001; 16(2):79-88. PubMed ID: 11312532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous wave-based multiphoton excitation fluorescence for capillary electrophoresis.
    Chen S; Liu BF; Fu L; Xiong T; Liu T; Zhang Z; Huang ZL; Lu Q; Zhao YD; Luo Q
    J Chromatogr A; 2006 Mar; 1109(2):160-6. PubMed ID: 16325835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules.
    Hiki S; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2859-63. PubMed ID: 16615803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins.
    Renzi RF; Stamps J; Horn BA; Ferko S; Vandernoot VA; West JA; Crocker R; Wiedenman B; Yee D; Fruetel JA
    Anal Chem; 2005 Jan; 77(2):435-41. PubMed ID: 15649038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sheath-flow cuvette for high-sensitivity laser-induced fluorescence detection in capillary electrophoresis.
    Sobhani K; Michels DA; Dovichi NJ
    Appl Spectrosc; 2007 Jul; 61(7):777-9. PubMed ID: 17697473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection.
    Colyer C
    Cell Biochem Biophys; 2000; 33(3):323-37. PubMed ID: 11325049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic genetic analysis with an integrated a-Si:H detector.
    Kamei T; Toriello NM; Lagally ET; Blazej RG; Scherer JR; Street RA; Mathies RA
    Biomed Microdevices; 2005 Jun; 7(2):147-52. PubMed ID: 15940430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microchip-based cell analysis and clinical diagnosis system.
    Sato K; Mawatari K; Kitamori T
    Lab Chip; 2008 Dec; 8(12):1992-8. PubMed ID: 19023462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.