These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions. Giordano BC; Jin L; Couch AJ; Ferrance JP; Landers JP Anal Chem; 2004 Aug; 76(16):4705-14. PubMed ID: 15307780 [TBL] [Abstract][Full Text] [Related]
4. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices. Fredrick SJ; Gross EM Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185 [TBL] [Abstract][Full Text] [Related]
5. Photothermal spectrometry for detection in miniaturized systems: relevant features, strategies and recent applications. Ghaleb KA; Georges J Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2793-801. PubMed ID: 15350914 [TBL] [Abstract][Full Text] [Related]
6. Separation and determination of β-casomorphins by using glass microfluidic chip electrophoresis together with laser-induced fluorescence detection. Wang Z; Wang W; Wang W; Xu L; Chen G; Fu F J Sep Sci; 2011 Jan; 34(2):196-201. PubMed ID: 21246725 [TBL] [Abstract][Full Text] [Related]
7. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems. Cesaro-Tadic S; Dernick G; Juncker D; Buurman G; Kropshofer H; Michel B; Fattinger C; Delamarche E Lab Chip; 2004 Dec; 4(6):563-9. PubMed ID: 15570366 [TBL] [Abstract][Full Text] [Related]
8. Cross-talk problem on a fluorescence multi-channel microfluidic chip system. Irawan R; Tjin SC; Yager P; Zhang D Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808 [TBL] [Abstract][Full Text] [Related]
9. A low-cost, low-power consumption, miniature laser-induced fluorescence system for DNA detection on a microfluidic device. Shrinivasan S; Norris PM; Landers JP; Ferrance JP Clin Lab Med; 2007 Mar; 27(1):173-81. PubMed ID: 17416310 [TBL] [Abstract][Full Text] [Related]
10. Dual fluorescence/contactless conductivity detection for microfluidic chip. Liu C; Mo YY; Chen ZG; Li X; Li OL; Zhou X Anal Chim Acta; 2008 Jul; 621(2):171-7. PubMed ID: 18573381 [TBL] [Abstract][Full Text] [Related]
15. Sheath-flow cuvette for high-sensitivity laser-induced fluorescence detection in capillary electrophoresis. Sobhani K; Michels DA; Dovichi NJ Appl Spectrosc; 2007 Jul; 61(7):777-9. PubMed ID: 17697473 [TBL] [Abstract][Full Text] [Related]
16. Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection. Colyer C Cell Biochem Biophys; 2000; 33(3):323-37. PubMed ID: 11325049 [TBL] [Abstract][Full Text] [Related]
17. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Bliss CL; McMullin JN; Backhouse CJ Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic genetic analysis with an integrated a-Si:H detector. Kamei T; Toriello NM; Lagally ET; Blazej RG; Scherer JR; Street RA; Mathies RA Biomed Microdevices; 2005 Jun; 7(2):147-52. PubMed ID: 15940430 [TBL] [Abstract][Full Text] [Related]
19. Microchip-based cell analysis and clinical diagnosis system. Sato K; Mawatari K; Kitamori T Lab Chip; 2008 Dec; 8(12):1992-8. PubMed ID: 19023462 [TBL] [Abstract][Full Text] [Related]
20. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors. Irawan R; Tjin SC Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]