BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15565729)

  • 21. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines.
    Knop M; Siegers K; Pereira G; Zachariae W; Winsor B; Nasmyth K; Schiebel E
    Yeast; 1999 Jul; 15(10B):963-72. PubMed ID: 10407276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PCR-mediated epitope tagging of genes in yeast.
    Mathur R; Kaiser P
    Methods Mol Biol; 2014; 1205():37-44. PubMed ID: 25213238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epitope tagging of chromosomal genes in Salmonella.
    Uzzau S; Figueroa-Bossi N; Rubino S; Bossi L
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15264-9. PubMed ID: 11742086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A CRISPR/Cas9-based method for seamless N-terminal protein tagging in Saccharomyces cerevisiae.
    Kira S; Noda T
    Yeast; 2021 Nov; 38(11):592-600. PubMed ID: 34463385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epitope tagging of proteins at the native chromosomal loci of genes in mice and in cultured vertebrate cells.
    Chen YI; Maika SD; Stevens SW
    J Mol Biol; 2006 Aug; 361(3):412-9. PubMed ID: 16859702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Set of Plasmid-Based Modules for Easy Switching of C-Terminal Epitope Tags in
    Hayashi H; Kishi T
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog.
    Abe Y; Kita Y; Niikura T
    FEBS J; 2008 Jan; 275(2):318-31. PubMed ID: 18081866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Choice of an adequate promoter for efficient complementation in Saccharomyces cerevisiae: a case study.
    Lo Presti L; Cerutti L; Monod M; Hauser PM
    Res Microbiol; 2009; 160(6):380-8. PubMed ID: 19589384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping of an internal protease cleavage site in the Ssy5p component of the amino acid sensor of Saccharomyces cerevisiae and functional characterization of the resulting pro- and protease domains by gain-of-function genetics.
    Poulsen P; Lo Leggio L; Kielland-Brandt MC
    Eukaryot Cell; 2006 Mar; 5(3):601-8. PubMed ID: 16524914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A vector for double epitope tagging with a recyclable marker.
    Germino M; Sohail H; Germino E; Germino J
    Yeast; 2006 Jul; 23(10):763-9. PubMed ID: 16862609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Avoiding the ends: internal epitope tagging of proteins using transposon Tn7.
    Zordan RE; Beliveau BJ; Trow JA; Craig NL; Cormack BP
    Genetics; 2015 May; 200(1):47-58. PubMed ID: 25745023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The essential function of Swc4p - a protein shared by two chromatin-modifying complexes of the yeast Saccharomyces cerevisiae - resides within its N-terminal part.
    Miciałkiewicz A; Chełstowska A
    Acta Biochim Pol; 2008; 55(3):603-12. PubMed ID: 18726008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modules for cloning-free chromatin tagging in Saccharomyces cerevisae.
    Rohner S; Gasser SM; Meister P
    Yeast; 2008 Mar; 25(3):235-9. PubMed ID: 18302313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe.
    Tasto JJ; Carnahan RH; McDonald WH; Gould KL
    Yeast; 2001 May; 18(7):657-62. PubMed ID: 11329175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae.
    Sung MK; Huh WK
    Yeast; 2007 Sep; 24(9):767-75. PubMed ID: 17534848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A genomic integration method to visualize localization of endogenous mRNAs in living yeast.
    Haim L; Zipor G; Aronov S; Gerst JE
    Nat Methods; 2007 May; 4(5):409-12. PubMed ID: 17417645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function.
    He S; Bystricky K; Leon S; François JM; Parrou JL
    FEBS J; 2009 Oct; 276(19):5432-46. PubMed ID: 19703229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manipulating the yeast genome: deletion, mutation, and tagging by PCR.
    Gardner JM; Jaspersen SL
    Methods Mol Biol; 2014; 1205():45-78. PubMed ID: 25213239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.