BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 1556599)

  • 21. Laminar-dependent dendritic spine alterations in the motor cortex of adult rats following callosal transection and forced forelimb use.
    Adkins DL; Bury SD; Jones TA
    Neurobiol Learn Mem; 2002 Jul; 78(1):35-52. PubMed ID: 12071666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.
    Tjia M; Yu X; Jammu LS; Lu J; Zuo Y
    Front Neural Circuits; 2017; 11():43. PubMed ID: 28674487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology.
    Kim HG; Connors BW
    J Neurosci; 1993 Dec; 13(12):5301-11. PubMed ID: 8254376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat.
    Wouterlood FG; Van Haeften T; Eijkhoudt M; Baks-Te-Bulte L; Goede PH; Witter MP
    Brain Res; 2004 Jul; 1013(1):1-12. PubMed ID: 15196963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation of electrophysiology, morphology, and functions in corticotectal and corticopretectal projection neurons in rat visual cortex.
    Rumberger A; Schmidt M; Lohmann H; Hoffmann KP
    Exp Brain Res; 1998 Apr; 119(3):375-90. PubMed ID: 9551838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure.
    Jones L; Fischer I; Levitt P
    Cereb Cortex; 1996; 6(3):431-45. PubMed ID: 8670669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long term effects of callosal lesions in the auditory cortex of rats of different ages.
    Vaughan DW; Cahill CJ
    Neurobiol Aging; 1984; 5(3):175-82. PubMed ID: 6514104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.
    Escobar MI; Pimienta H; Caviness VS; Jacobson M; Crandall JE; Kosik KS
    Neuroscience; 1986 Apr; 17(4):975-89. PubMed ID: 3714046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons.
    Larkum ME; Waters J; Sakmann B; Helmchen F
    J Neurosci; 2007 Aug; 27(34):8999-9008. PubMed ID: 17715337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons.
    Cubelos B; Briz CG; Esteban-Ortega GM; Nieto M
    Dev Neurobiol; 2015 Feb; 75(2):163-72. PubMed ID: 25059644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Golgi study on the neuronal organization of the interhemispheric cortex in the mouse. I. Projection neurons.
    Iwahori N; Mizuno N
    Anat Embryol (Berl); 1981; 161(4):465-81. PubMed ID: 7247041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversal of neuronal polarity characterized by conversion of dendrites into axons in neonatal rat cortical neurons in vitro.
    Hayashi K; Kawai-Hirai R; Ishikawa K; Takata K
    Neuroscience; 2002; 110(1):7-17. PubMed ID: 11882368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.
    Lev DL; White EL
    Eur J Neurosci; 1997 Feb; 9(2):280-90. PubMed ID: 9058048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The evolution of the structure of the neocortex in mammals: a new theory of cytoarchitecture].
    MarĂ­n Padilla M
    Rev Neurol; 2001 Nov 1-15; 33(9):843-53. PubMed ID: 11784988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target-specific differences in somatodendritic morphology of layer V pyramidal neurons in rat motor cortex.
    Gao WJ; Zheng ZH
    J Comp Neurol; 2004 Aug; 476(2):174-85. PubMed ID: 15248197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analyses of intracellularly characterized and labeled thalamocortical projection neurons in the ventrobasal complex of primates.
    Havton LA; Ohara PT
    J Comp Neurol; 1993 Oct; 336(1):135-50. PubMed ID: 8254110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Callosal neurons in the cingulate cortical plate and subplate of human fetuses.
    deAzevedo LC; Hedin-Pereira C; Lent R
    J Comp Neurol; 1997 Sep; 386(1):60-70. PubMed ID: 9303525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical modules in the posteromedial barrel subfield (Sml) of the mouse.
    White EL; Peters A
    J Comp Neurol; 1993 Aug; 334(1):86-96. PubMed ID: 8408761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The corticotectal projection of the rat established in organotypic culture.
    Klauer S
    Neuroreport; 1991 Oct; 2(10):569-72. PubMed ID: 1756236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice.
    Terashima T; Inoue K; Inoue Y; Mikoshiba K; Tsukada Y
    J Comp Neurol; 1985 Feb; 232(1):83-98. PubMed ID: 3973085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.