BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 15566184)

  • 21. Selection of denitrifying phosphorus accumulating organisms in activated sludge.
    Spagni A; Stante L; Bortone G
    Environ Technol; 2001 Dec; 22(12):1429-37. PubMed ID: 11873878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production.
    Meyer RL; Zeng RJ; Giugliano V; Blackall LL
    FEMS Microbiol Ecol; 2005 May; 52(3):329-38. PubMed ID: 16329918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological denitrifying phosphorus removal in SBR: effect of added nitrate concentration and sludge retention time.
    Merzouki M; Bernet N; Delgenès JP; Moletta R; Benlemlih M
    Water Sci Technol; 2001; 43(3):191-4. PubMed ID: 11381905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system.
    Lee JK; Choi CK; Lee KH; Yim SB
    Bioresour Technol; 2008 Nov; 99(16):7788-96. PubMed ID: 18325762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen removal in a fluidized bed bioreactor by using mixed culture under oxygen-limited conditions.
    Khin T; Annachhatre AP
    Water Sci Technol; 2004; 50(6):313-20. PubMed ID: 15537020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long term effects of temperature and substrate level on BNR with an external nitrification reactor.
    Ha JS; Choi E
    Water Sci Technol; 2003; 48(8):35-41. PubMed ID: 14682568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of organic carbon, nitrogen and phosphorus in sequential batch reactors integrating the aerobic/anaerobic processes.
    Callado NH; Foresti E
    Water Sci Technol; 2001; 44(4):263-70. PubMed ID: 11575092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative estimation of the role of denitrifying phosphate accumulating organisms in nutrient removal.
    Shoji T; Satoh H; Mino T
    Water Sci Technol; 2003; 47(11):23-9. PubMed ID: 12906267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients.
    Chae SR; Kang ST; Watanabe Y; Shin HS
    Water Res; 2006 Jun; 40(11):2161-7. PubMed ID: 16720035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic control strategy for biological nitrogen removal of low C/N wastewater in a sequencing batch reactor.
    Kishida N; Kim JH; Chen M; Tsuneda S; Sasaki H; Sudo R
    Water Sci Technol; 2004; 50(10):45-50. PubMed ID: 15656294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Denitrifying phosphate uptake of biological phosphorous removal granular sludge in SBR].
    Liu XY; Zhao HM; Peng DC; Sui XJ
    Huan Jing Ke Xue; 2008 Aug; 29(8):2254-9. PubMed ID: 18839581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Denitrification rate and carbon source consumption in full-scale wastewater filtration.
    Jonsson L
    Water Sci Technol; 2004; 50(7):105-12. PubMed ID: 15553465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs.
    Katsogiannis AN; Kornaros M; Lyberatos G
    Water Sci Technol; 2003; 47(11):53-9. PubMed ID: 12906271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors.
    Mokhayeri Y; Riffat R; Takacs I; Dold P; Bott C; Hinojosa J; Bailey W; Murthy S
    Water Sci Technol; 2008; 58(1):233-8. PubMed ID: 18653959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.
    Merzouki M; Bernet N; Delgenès JP; Benlemlih M
    Bioresour Technol; 2005 Aug; 96(12):1317-22. PubMed ID: 15792577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms.
    Zhou Y; Pijuan M; Yuan Z
    Water Res; 2008 Jun; 42(12):3207-17. PubMed ID: 18472126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological denitrification in a sequencing batch reactor.
    Dangcong P; Yi W; Hao W; Xiaochang W
    Water Sci Technol; 2004; 50(10):67-72. PubMed ID: 15656297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of ORP variation, carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge from dephanox process.
    Wang YY; Peng YZ; Peng CY; Wang SY; Zeng W
    Water Sci Technol; 2004; 50(10):153-61. PubMed ID: 15656308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimisation of storage driven denitrification by using on-line specific oxygen uptake rate monitoring during SND in a SBR.
    Third KA; Sepramaniam S; Tonkovic Z; Newland M; Cord-Ruwisch R
    Water Sci Technol; 2004; 50(10):171-80. PubMed ID: 15656310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.