BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15566280)

  • 1. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro.
    Jain RP; Pettersson HI; Zhang J; Aull KD; Fortin PD; Huitema C; Eltis LD; Parrish JC; James MN; Wishart DS; Vederas JC
    J Med Chem; 2004 Dec; 47(25):6113-6. PubMed ID: 15566280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aryl methylene ketones and fluorinated methylene ketones as reversible inhibitors for severe acute respiratory syndrome (SARS) 3C-like proteinase.
    Zhang J; Huitema C; Niu C; Yin J; James MN; Eltis LD; Vederas JC
    Bioorg Chem; 2008 Oct; 36(5):229-40. PubMed ID: 18295820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters.
    Zhang J; Pettersson HI; Huitema C; Niu C; Yin J; James MN; Eltis LD; Vederas JC
    J Med Chem; 2007 Apr; 50(8):1850-64. PubMed ID: 17381079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and evaluation of keto-glutamine analogues as inhibitors of hepatitis A virus 3C proteinase.
    Ramtohul YK; James MN; Vederas JC
    J Org Chem; 2002 May; 67(10):3169-78. PubMed ID: 12003522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of peptidyl Michael acceptors that inactivate human rhinovirus 3C protease and inhibit virus replication.
    Kong JS; Venkatraman S; Furness K; Nimkar S; Shepherd TA; Wang QM; Aubé J; Hanzlik RP
    J Med Chem; 1998 Jul; 41(14):2579-87. PubMed ID: 9651162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments for the design, synthesis and biological evaluation of potent SARS-CoV 3CL(pro) inhibitors.
    Regnier T; Sarma D; Hidaka K; Bacha U; Freire E; Hayashi Y; Kiso Y
    Bioorg Med Chem Lett; 2009 May; 19(10):2722-7. PubMed ID: 19362479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease.
    Shao YM; Yang WB; Kuo TH; Tsai KC; Lin CH; Yang AS; Liang PH; Wong CH
    Bioorg Med Chem; 2008 Apr; 16(8):4652-60. PubMed ID: 18329272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors.
    Prior AM; Kim Y; Weerasekara S; Moroze M; Alliston KR; Uy RA; Groutas WC; Chang KO; Hua DH
    Bioorg Med Chem Lett; 2013 Dec; 23(23):6317-20. PubMed ID: 24125888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease.
    Shie JJ; Fang JM; Kuo CJ; Kuo TH; Liang PH; Huang HJ; Yang WB; Lin CH; Chen JL; Wu YT; Wong CH
    J Med Chem; 2005 Jun; 48(13):4469-73. PubMed ID: 15974598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Chu LH; Choy WY; Tsai SN; Rao Z; Ngai SM
    Protein Sci; 2006 Apr; 15(4):699-709. PubMed ID: 16600962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor.
    Ohnishi K; Hattori Y; Kobayashi K; Akaji K
    Bioorg Med Chem; 2019 Jan; 27(2):425-435. PubMed ID: 30558861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors.
    Ghosh AK; Gong G; Grum-Tokars V; Mulhearn DC; Baker SC; Coughlin M; Prabhakar BS; Sleeman K; Johnson ME; Mesecar AD
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5684-8. PubMed ID: 18796354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tripeptide aldehyde inhibitors of human rhinovirus 3C protease: design, synthesis, biological evaluation, and cocrystal structure solution of P1 glutamine isosteric replacements.
    Webber SE; Okano K; Little TL; Reich SH; Xin Y; Fuhrman SA; Matthews DA; Love RA; Hendrickson TF; Patick AK; Meador JW; Ferre RA; Brown EL; Ford CE; Binford SL; Worland ST
    J Med Chem; 1998 Jul; 41(15):2786-805. PubMed ID: 9667969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements.
    Dragovich PS; Prins TJ; Zhou R; Webber SE; Marakovits JT; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Ford CE; Burke BJ; Rejto PA; Hendrickson TF; Tuntland T; Brown EL; Meador JW; Ferre RA; Harr JE; Kosa MB; Worland ST
    J Med Chem; 1999 Apr; 42(7):1213-24. PubMed ID: 10197965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of cinanserin analogs as severe acute respiratory syndrome coronavirus 3CL protease inhibitors.
    Yang Q; Chen L; He X; Gao Z; Shen X; Bai D
    Chem Pharm Bull (Tokyo); 2008 Oct; 56(10):1400-5. PubMed ID: 18827378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.
    Yang S; Chen SJ; Hsu MF; Wu JD; Tseng CT; Liu YF; Chen HC; Kuo CW; Wu CS; Chang LW; Chen WC; Liao SY; Chang TY; Hung HH; Shr HL; Liu CY; Huang YA; Chang LY; Hsu JC; Peters CJ; Wang AH; Hsu MC
    J Med Chem; 2006 Aug; 49(16):4971-80. PubMed ID: 16884309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 3. Structure-activity studies of ketomethylene-containing peptidomimetics.
    Dragovich PS; Prins TJ; Zhou R; Fuhrman SA; Patick AK; Matthews DA; Ford CE; Meador JW; Ferre RA; Worland ST
    J Med Chem; 1999 Apr; 42(7):1203-12. PubMed ID: 10197964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase.
    Liu Z; Huang C; Fan K; Wei P; Chen H; Liu S; Pei J; Shi L; Li B; Yang K; Liu Y; Lai L
    J Chem Inf Model; 2005; 45(1):10-17. PubMed ID: 15667124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.
    Wei P; Fan K; Chen H; Ma L; Huang C; Tan L; Xi D; Li C; Liu Y; Cao A; Lai L
    Biochem Biophys Res Commun; 2006 Jan; 339(3):865-72. PubMed ID: 16329994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based design of ketone-containing, tripeptidyl human rhinovirus 3C protease inhibitors.
    Dragovich PS; Zhou R; Webber SE; Prins TJ; Kwok AK; Okano K; Fuhrman SA; Zalman LS; Maldonado FC; Brown EL; Meador JW; Patick AK; Ford CE; Brothers MA; Binford SL; Matthews DA; Ferre RA; Worland ST
    Bioorg Med Chem Lett; 2000 Jan; 10(1):45-8. PubMed ID: 10636240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.