These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15566286)

  • 21. Scaffold hopping using clique detection applied to reduced graphs.
    Barker EJ; Buttar D; Cosgrove DA; Gardiner EJ; Kitts P; Willett P; Gillet VJ
    J Chem Inf Model; 2006; 46(2):503-11. PubMed ID: 16562978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach.
    Vijayan RS; Ghoshal N
    J Mol Graph Model; 2008 Oct; 27(3):286-98. PubMed ID: 18565775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SHOP: scaffold HOPping by GRID-based similarity searches.
    Bergmann R; Linusson A; Zamora I
    J Med Chem; 2007 May; 50(11):2708-17. PubMed ID: 17489578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols.
    Evers A; Hessler G; Matter H; Klabunde T
    J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SHOP: receptor-based scaffold HOPping by GRID-based similarity searches.
    Bergmann R; Liljefors T; Sørensen MD; Zamora I
    J Chem Inf Model; 2009 Mar; 49(3):658-69. PubMed ID: 19265417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of the novel molecular alignment method using the Hopfield Neural Network to 3D-QSAR.
    Arakawa M; Hasegawa K; Funatsu K
    J Chem Inf Comput Sci; 2003; 43(5):1396-402. PubMed ID: 14502472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments.
    Ebalunode JO; Zheng W
    J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures.
    Mason JS; Morize I; Menard PR; Cheney DL; Hulme C; Labaudiniere RF
    J Med Chem; 1999 Aug; 42(17):3251-64. PubMed ID: 10464012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.
    Bonachéra F; Parent B; Barbosa F; Froloff N; Horvath D
    J Chem Inf Model; 2006; 46(6):2457-77. PubMed ID: 17125187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient generation, storage, and manipulation of fully flexible pharmacophore multiplets and their use in 3-D similarity searching.
    Abrahamian E; Fox PC; Naerum L; Christensen IT; Thøgersen H; Clark RD
    J Chem Inf Comput Sci; 2003; 43(2):458-68. PubMed ID: 12653509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening.
    Vogt M; Stumpfe D; Geppert H; Bajorath J
    J Med Chem; 2010 Aug; 53(15):5707-15. PubMed ID: 20684607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening.
    Liu X; Jiang H; Li H
    J Chem Inf Model; 2011 Sep; 51(9):2372-85. PubMed ID: 21819157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fuzzy tricentric pharmacophore fingerprints. 2. Application of topological fuzzy pharmacophore triplets in quantitative structure-activity relationships.
    Bonachéra F; Horvath D
    J Chem Inf Model; 2008 Feb; 48(2):409-25. PubMed ID: 18254617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping.
    Lo YC; Senese S; Damoiseaux R; Torres JZ
    ACS Chem Biol; 2016 Aug; 11(8):2244-53. PubMed ID: 27285961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ErG: 2D pharmacophore descriptions for scaffold hopping.
    Stiefl N; Watson IA; Baumann K; Zaliani A
    J Chem Inf Model; 2006; 46(1):208-20. PubMed ID: 16426057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Bayes affinity fingerprints" improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept?
    Bender A; Jenkins JL; Glick M; Deng Z; Nettles JH; Davies JW
    J Chem Inf Model; 2006; 46(6):2445-56. PubMed ID: 17125186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-QSAR and preliminary evaluation of anti-inflammatory activity of series of N-pyrrolylcarboxylic acids.
    Lessigiarska I; Nankov A; Bocheva A; Pajeva I; Bijev A
    Farmaco; 2005 Mar; 60(3):209-18. PubMed ID: 15784239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.