BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15566295)

  • 21. Two new phenylpropanoids from Micromelum integerrimum.
    Wang ZY; He WJ; Zhou WB; Zeng GZ; Yin ZQ; Zhao SX; Tan NH
    Chin J Nat Med; 2014 Aug; 12(8):619-22. PubMed ID: 25156288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation.
    Jung HA; Park JJ; Islam MN; Jin SE; Min BS; Lee JH; Sohn HS; Choi JS
    Arch Pharm Res; 2012 Jun; 35(6):1021-35. PubMed ID: 22870812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors.
    Chaudhaery SS; Roy KK; Saxena AK
    J Chem Inf Model; 2009 Jun; 49(6):1590-601. PubMed ID: 19441865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology.
    Chaudhaery SS; Roy KK; Shakya N; Saxena G; Sammi SR; Nazir A; Nath C; Saxena AK
    J Med Chem; 2010 Sep; 53(17):6490-505. PubMed ID: 20684567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B.
    He XC; Feng S; Wang ZF; Shi Y; Zheng S; Xia Y; Jiang H; Tang XC; Bai D
    Bioorg Med Chem; 2007 Feb; 15(3):1394-408. PubMed ID: 17126020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening of acetylcholinesterase inhibitors in natural extracts by CE with electrophoretically mediated microanalysis technique.
    Tang ZM; Wang ZY; Kang JW
    Electrophoresis; 2007 Feb; 28(3):360-5. PubMed ID: 17154327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A coumarin from Mallotus resinosus that mediates DNA cleavage.
    Ma J; Jones SH; Hecht SM
    J Nat Prod; 2004 Sep; 67(9):1614-6. PubMed ID: 15387675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana.
    Siwinska J; Kadzinski L; Banasiuk R; Gwizdek-Wisniewska A; Olry A; Banecki B; Lojkowska E; Ihnatowicz A
    BMC Plant Biol; 2014 Oct; 14():280. PubMed ID: 25326030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New selective acetylcholinesterase inhibitors designed from natural piperidine alkaloids.
    Viegas C; Bolzani VS; Pimentel LS; Castro NG; Cabral RF; Costa RS; Floyd C; Rocha MS; Young MC; Barreiro EJ; Fraga CA
    Bioorg Med Chem; 2005 Jul; 13(13):4184-90. PubMed ID: 15878668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer's disease.
    Lin HQ; Ho MT; Lau LS; Wong KK; Shaw PC; Wan DC
    Chem Biol Interact; 2008 Sep; 175(1-3):352-4. PubMed ID: 18573242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand.
    Navarro-García VM; Rojas G; Avilés M; Fuentes M; Zepeda G
    Mycoses; 2011 Sep; 54(5):e569-71. PubMed ID: 21605187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer's agents.
    Ambure P; Kar S; Roy K
    Biosystems; 2014 Feb; 116():10-20. PubMed ID: 24325852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylcholinesterase inhibitors from Stephania venosa tuber.
    Ingkaninan K; Phengpa P; Yuenyongsawad S; Khorana N
    J Pharm Pharmacol; 2006 May; 58(5):695-700. PubMed ID: 16640839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cassava: an appraisal of its phytochemistry and its biotechnological prospects.
    Blagbrough IS; Bayoumi SA; Rowan MG; Beeching JR
    Phytochemistry; 2010 Dec; 71(17-18):1940-51. PubMed ID: 20943239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two new coumarin glycosides from Chimonanthus nitens.
    Li QJ; Wang ML; Yang XS; Ma L; Hao XJ
    J Asian Nat Prod Res; 2013; 15(3):270-5. PubMed ID: 23421779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights into the acetylcholinesterase inhibitory activity of Lycopodium clavatum.
    Rollinger JM; Ewelt J; Seger C; Sturm S; Ellmerer EP; Stuppner H
    Planta Med; 2005 Nov; 71(11):1040-3. PubMed ID: 16320206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the acetylcholinesterase inhibition of sarin: a comparative interaction study of the inhibitor and acetylcholine with a model enzyme cavity.
    Majumdar D; Roszak S; Leszczynski J
    J Phys Chem B; 2006 Jul; 110(27):13597-607. PubMed ID: 16821887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative studies of huperzine A, donepezil, and rivastigmine on brain acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine levels in freely-moving rats.
    Liang YQ; Tang XC
    Acta Pharmacol Sin; 2006 Sep; 27(9):1127-36. PubMed ID: 16923332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potency determinations of acetylcholinesterase inhibitors using Ellman's reaction-based assay in screening: Effect of assay variants.
    Järvinen P; Vuorela P; Hatakka A; Fallarero A
    Anal Biochem; 2011 Jan; 408(1):166-8. PubMed ID: 20851093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.