These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 15566577)

  • 21. Network archaeology: uncovering ancient networks from present-day interactions.
    Navlakha S; Kingsford C
    PLoS Comput Biol; 2011 Apr; 7(4):e1001119. PubMed ID: 21533211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput characterization of protein-protein interactions by reprogramming yeast mating.
    Younger D; Berger S; Baker D; Klavins E
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12166-12171. PubMed ID: 29087945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtering high-throughput protein-protein interaction data using a combination of genomic features.
    Patil A; Nakamura H
    BMC Bioinformatics; 2005 Apr; 6():100. PubMed ID: 15833142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stratus not altocumulus: a new view of the yeast protein interaction network.
    Batada NN; Reguly T; Breitkreutz A; Boucher L; Breitkreutz BJ; Hurst LD; Tyers M
    PLoS Biol; 2006 Oct; 4(10):e317. PubMed ID: 16984220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable evolutionary signal in a yeast protein interaction network.
    Wuchty S; Barabási AL; Ferdig MT
    BMC Evol Biol; 2006 Jan; 6():8. PubMed ID: 16441898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conservation and topology of protein interaction networks under duplication-divergence evolution.
    Evlampiev K; Isambert H
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9863-8. PubMed ID: 18632555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution after whole-genome duplication: a network perspective.
    Zhu Y; Lin Z; Nakhleh L
    G3 (Bethesda); 2013 Nov; 3(11):2049-57. PubMed ID: 24048644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network Centrality Analysis in Fungi Reveals Complex Regulation of Lost and Gained Genes.
    Coulombe-Huntington J; Xia Y
    PLoS One; 2017; 12(1):e0169459. PubMed ID: 28046110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae.
    Joshi T; Chen Y; Becker JM; Alexandrov N; Xu D
    OMICS; 2004; 8(4):322-33. PubMed ID: 15703479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network.
    Zhang LV; King OD; Wong SL; Goldberg DS; Tong AH; Lesage G; Andrews B; Bussey H; Boone C; Roth FP
    J Biol; 2005; 4(2):6. PubMed ID: 15982408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The genetic landscape of a cell.
    Costanzo M; Baryshnikova A; Bellay J; Kim Y; Spear ED; Sevier CS; Ding H; Koh JL; Toufighi K; Mostafavi S; Prinz J; St Onge RP; VanderSluis B; Makhnevych T; Vizeacoumar FJ; Alizadeh S; Bahr S; Brost RL; Chen Y; Cokol M; Deshpande R; Li Z; Lin ZY; Liang W; Marback M; Paw J; San Luis BJ; Shuteriqi E; Tong AH; van Dyk N; Wallace IM; Whitney JA; Weirauch MT; Zhong G; Zhu H; Houry WA; Brudno M; Ragibizadeh S; Papp B; Pál C; Roth FP; Giaever G; Nislow C; Troyanskaya OG; Bussey H; Bader GD; Gingras AC; Morris QD; Kim PM; Kaiser CA; Myers CL; Andrews BJ; Boone C
    Science; 2010 Jan; 327(5964):425-31. PubMed ID: 20093466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.
    Dwight Kuo P; Banzhaf W; Leier A
    Biosystems; 2006 Sep; 85(3):177-200. PubMed ID: 16650928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene regulatory network growth by duplication.
    Teichmann SA; Babu MM
    Nat Genet; 2004 May; 36(5):492-6. PubMed ID: 15107850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential duplication in the sparse part of yeast protein interaction network.
    Li L; Huang Y; Xia X; Sun Z
    Mol Biol Evol; 2006 Dec; 23(12):2467-73. PubMed ID: 16980576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum.
    Ratmann O; Jørgensen O; Hinkley T; Stumpf M; Richardson S; Wiuf C
    PLoS Comput Biol; 2007 Nov; 3(11):e230. PubMed ID: 18052538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene duplication and hierarchical modularity in intracellular interaction networks.
    Hallinan J
    Biosystems; 2004; 74(1-3):51-62. PubMed ID: 15125992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation network rewiring by gene duplication.
    Freschi L; Courcelles M; Thibault P; Michnick SW; Landry CR
    Mol Syst Biol; 2011 Jul; 7():504. PubMed ID: 21734643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upstream plasticity and downstream robustness in evolution of molecular networks.
    Maslov S; Sneppen K; Eriksen KA; Yan KK
    BMC Evol Biol; 2004 Mar; 4():9. PubMed ID: 15070432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.