BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15567148)

  • 1. Study of the preferred modification sites of the quinone methide intermediate resulting from the latent trapping device of the activity probes for hydrolases.
    Lo LC; Chiang YL; Kuo CH; Liao HK; Chen YJ; Lin JJ
    Biochem Biophys Res Commun; 2005 Jan; 326(1):30-5. PubMed ID: 15567148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and peptide incorporation of an unnatural amino acid containing activity-based probe for protein tyrosine phosphatases.
    Shen K; Qi L; Ravula M; Klimaszewski K
    Bioorg Med Chem Lett; 2009 Jun; 19(12):3264-7. PubMed ID: 19423347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis toward the construction of an activity probe library for glycosidases.
    Shie TH; Chiang YL; Lin JJ; Li YK; Lo LC
    Carbohydr Res; 2006 Mar; 341(4):443-56. PubMed ID: 16414035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of pyrrolo[1,2-a]indole- and pyrido[1,2-a]indole-based quinone methides. Mechanistic explanations for differences in cytostatic/cytotoxic properties.
    Khdour O; Skibo EB
    J Org Chem; 2007 Nov; 72(23):8636-47. PubMed ID: 17927245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue.
    Hansen SK; Cancilla MT; Shiau TP; Kung J; Chen T; Erlanson DA
    Biochemistry; 2005 May; 44(21):7704-12. PubMed ID: 15909985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinone methide chemistry of prekinamycins: 13C-labeling, spectral global fitting and in vitro studies.
    Khdour O; Skibo EB
    Org Biomol Chem; 2009 May; 7(10):2140-54. PubMed ID: 19421453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine.
    von Montfort C; Sharov VS; Metzger S; Schöneich C; Sies H; Klotz LO
    Biol Chem; 2006; 387(10-11):1399-404. PubMed ID: 17081112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenched quinone methide based activity probes--a cautionary tale.
    Sellars JD; Landrum M; Congreve A; Dixon DP; Mosely JA; Beeby A; Edwards R; Steel PG
    Org Biomol Chem; 2010 Apr; 8(7):1610-8. PubMed ID: 20237672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY; Huang YF; Khoo KH; Meng TC
    Methods; 2007 Jul; 42(3):243-9. PubMed ID: 17532511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.
    Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC
    J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of interaction between protein-tyrosine phosphatase 1B and a bidentate inhibitor.
    Liu GX; Tan JZ; Niu CY; Shen JH; Luo XM; Shen X; Chen KX; Jiang HL
    Acta Pharmacol Sin; 2006 Jan; 27(1):100-10. PubMed ID: 16364216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural proteomics of macromolecular assemblies using oxidative footprinting and mass spectrometry.
    Guan JQ; Chance MR
    Trends Biochem Sci; 2005 Oct; 30(10):583-92. PubMed ID: 16126388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity.
    Sivaramakrishnan S; Keerthi K; Gates KS
    J Am Chem Soc; 2005 Aug; 127(31):10830-1. PubMed ID: 16076179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols.
    Huang ST; Ting KN; Wang KL
    Anal Chim Acta; 2008 Jul; 620(1-2):120-6. PubMed ID: 18558132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-based proteomics: enzymatic activity profiling in complex proteomes.
    Schmidinger H; Hermetter A; Birner-Gruenberger R
    Amino Acids; 2006 Jun; 30(4):333-50. PubMed ID: 16773240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and synthesis of class-selective activity probes for protein tyrosine phosphatases.
    Lo LC; Pang TL; Kuo CH; Chiang YL; Wang HY; Lin JJ
    J Proteome Res; 2002; 1(1):35-40. PubMed ID: 12643524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Multiple-Labeling Probes for the Visualization of Enzyme Activities.
    Song H; Li Y; Chen Y; Xue C; Xie H
    Chemistry; 2019 Nov; 25(61):13994-14002. PubMed ID: 31506999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-based profiling of lipases in living cells.
    Schicher M; Jesse I; Birner-Gruenberger R
    Methods Mol Biol; 2009; 580():251-66. PubMed ID: 19784604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent modification of a melanoma-derived antigenic peptide with a natural quinone methide. Preliminary chemical, molecular modelling and immunological evaluation studies.
    Douat-Casassus C; Marchand-Geneste N; Diez E; Aznar C; Picard P; Geoffre S; Huet A; Bourguet-Kondracki ML; Gervois N; Jotereau F; Quideau S
    Mol Biosyst; 2006 May; 2(5):240-9. PubMed ID: 16880942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical and proteomic analysis of covalent adducts formed by quinone methide tumor promoters in mouse lung epithelial cell lines.
    Meier BW; Gomez JD; Zhou A; Thompson JA
    Chem Res Toxicol; 2005 Oct; 18(10):1575-85. PubMed ID: 16533022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.