These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A decision tree--based method for the differential diagnosis of Aortic Stenosis from Mitral Regurgitation using heart sounds. Pavlopoulos SA; Stasis AC; Loukis EN Biomed Eng Online; 2004 Jun; 3(1):21. PubMed ID: 15225347 [TBL] [Abstract][Full Text] [Related]
5. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes. Bahoura M Comput Biol Med; 2009 Sep; 39(9):824-43. PubMed ID: 19631934 [TBL] [Abstract][Full Text] [Related]
6. Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization. Pesu L; Helistö P; Ademovic E; Pesquet JC; Saarinen A; Sovijärvi AR Technol Health Care; 1998 Jun; 6(1):65-74. PubMed ID: 9754685 [TBL] [Abstract][Full Text] [Related]
7. Classification of wheeze sounds using cepstral analysis and neural networks. Hashemi A; Arabalibeik H; Agin K Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979 [TBL] [Abstract][Full Text] [Related]
8. Comparison of neural network predictors in the classification of tracheal-bronchial breath sounds by respiratory auscultation. Folland R; Hines E; Dutta R; Boilot P; Morgan D Artif Intell Med; 2004 Jul; 31(3):211-20. PubMed ID: 15302087 [TBL] [Abstract][Full Text] [Related]
9. Multichannel lung sound analysis for asthma detection. Islam MA; Bandyopadhyaya I; Bhattacharyya P; Saha G Comput Methods Programs Biomed; 2018 Jun; 159():111-123. PubMed ID: 29650306 [TBL] [Abstract][Full Text] [Related]
10. Support Vectors Machine-based identification of heart valve diseases using heart sounds. Maglogiannis I; Loukis E; Zafiropoulos E; Stasis A Comput Methods Programs Biomed; 2009 Jul; 95(1):47-61. PubMed ID: 19269056 [TBL] [Abstract][Full Text] [Related]
11. Classification of asthmatic breath sounds: preliminary results of the classifying capacity of human examiners versus artificial neural networks. Rietveld S; Oud M; Dooijes EH Comput Biomed Res; 1999 Oct; 32(5):440-8. PubMed ID: 10529301 [TBL] [Abstract][Full Text] [Related]
12. Classification of EEG signals using neural network and logistic regression. Subasi A; Erçelebi E Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265 [TBL] [Abstract][Full Text] [Related]
13. Lung sounds classification using convolutional neural networks. Bardou D; Zhang K; Ahmad SM Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435 [TBL] [Abstract][Full Text] [Related]
14. A filter bank-based source extraction algorithm for heart sound removal in respiratory sounds. Jin F; Sattar F; Goh DY Comput Biol Med; 2009 Sep; 39(9):768-77. PubMed ID: 19596272 [TBL] [Abstract][Full Text] [Related]
15. Analysis of wheezes using wavelet higher order spectral features. Taplidou SA; Hadjileontiadis LJ IEEE Trans Biomed Eng; 2010 Jul; 57(7):1596-610. PubMed ID: 20176540 [TBL] [Abstract][Full Text] [Related]
16. Content-based medical image classification using a new hierarchical merging scheme. Pourghassem H; Ghassemian H Comput Med Imaging Graph; 2008 Dec; 32(8):651-61. PubMed ID: 18789648 [TBL] [Abstract][Full Text] [Related]
17. Comparison of AR-based algorithms for respiratory sounds classification. Sankur B; Kahya YP; Güler EC; Engin T Comput Biol Med; 1994 Jan; 24(1):67-76. PubMed ID: 8205793 [TBL] [Abstract][Full Text] [Related]
19. Respiratory sound analysis in the era of evidence-based medicine and the world of medicine 2.0. Andrès E; Gass R; Charloux A; Brandt C; Hentzler A J Med Life; 2018; 11(2):89-106. PubMed ID: 30140315 [TBL] [Abstract][Full Text] [Related]
20. Feature extraction for pulmonary crackle representation via wavelet networks. Yeginer M; Kahya YP Comput Biol Med; 2009 Aug; 39(8):713-21. PubMed ID: 19539902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]